2 resultados para metabolic activity
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Enteric fermentation of methane by ruminant animals represents a major source of anthropogenic methane production. Methane produced in this manner is released to the atmosphere where it is highly efficient at absorbing thermal radiation, which consequently increases the global surface temperature. Although many different strategies to control ruminant methane emissions have been considered, few are currently considered viable. Obligate and acultative methane oxidising bacteria (MOB) and anaerobic methane oxidising archaea (ANME) play a fundamental role in the carbon cycle by metabolising methane before it is released into the atmosphere. Because of this, methanotrophic microorganisms represent a novel biological control agent in mitigating ruminant methane emissions. This project aims to characterise methanotrophic microorganisms from a range of environments, and to subsequently determine the metabolic activity of these microorganisms under in vitro rumen-like conditions.
Resumo:
Sheep and cattle are frequently subjected to feed and water deprivation (FWD) for about 12 h before, and then during, transport to reduce digesta load in the gastrointestinal tract. This FWD is marked by weight loss as urine and faeces mainly in the first 24 h but continuing at a reduced rate subsequently. The weight of rumen contents falls although water loss is to some extent masked by saliva inflow. FWD is associated with some stress, particularly when transportation is added. This is indicated by increased levels of plasma cortisol that may be partly responsible for an observed increase in the output of water and N in urine and faeces. Loss of body water induces dehydration that may induce feelings of thirst by effects on the hypothalamus structures through the renin-angiotensin-aldosterone system. There are suggestions that elevated cortisol levels depress angiotensin activity and prevent sensations of thirst in dehydrated animals, but further research in this area is needed. Dehydration coupled with the discharge of Na in urine challenges the maintenance of homeostasis. In FWD, Na excretion in urine is reduced and, with the reduction in digesta load, Na is gradually returned from the digestive tract to the extracellular fluid space. Control of enteropathogenic bacteria by normal rumen microbes is weakened by FWD and resulting infections may threaten animal health and meat safety. Recovery time is required after transport to restore full feed intake and to ensure that adequate glycogen is present in muscle pre-slaughter to maintain meat quality.