5 resultados para Intracellular Fluid -- immunology

em eResearch Archive - Queensland Department of Agriculture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely acknowledged that changes in intracellular calcium ion (Ca2+) concentration provide dynamic signals that control a plethora of cellular processes, including triggering and mediating host defence mechanisms. In this study, quantitative real-time PCR was used to analyse gene expression of 14 Ca2+ signalling proteins in skin obtained from high tick-resistant (HR) and low tick-resistant (LR) cattle following artificial challenge with cattle tick (Rhipicephalus (Boophilus) microplus). Up-regulation of numerous genes was observed in both HR and LR skin following tick challenge, however substantially higher transcription activation was found in HR tissue. The elevated expression in HR skin of specific Ca2+ signalling genes such as AHNAK, CASQ, IL2, NFAT2CIP and PLCG1 may be related to host resistance. Our data suggest that Ca2+ and its associated proteins might play an important role in host response to ticks and that further investigation is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tick resistant cattle could provide a potentially sustainable and environmentally sound method of controlling cattle ticks. Advances in genomics and the availability of the bovine genome sequence open up opportunities to identify useful and selectable genes controlling cattle tick resistance. Using quantitative real-time PCR and the Affymetrix bovine array platform, differences in gene expression of skin biopsies from tick resistant Bos indicus (Brahman) and tick susceptible Bos taurus (Holstein-Friesian) cattle following tick challenge were examined. We identified 138 significant differentially-expressed genes, including several immunological/host defence genes, extracellular matrix proteins, and transcription factors as well as genes involved in lipid metabolism. Three key pathways, represented by genes differentially expressed in resistant Brahmans, were identified; the development of the cell-mediated immune response, structural integrity of the dermis and intracellular Ca 2+ levels. Ca2+, which is implicated in host responses to microbial stimuli, may be required for the enhancement or fine-tuning of transcriptional activation of Ca2+- dependant host defence signalling pathways. Animal Genomics for Animal Health International Symposium, Paris, October 2007: (Proceedings)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New methods for controlling blowfly strike will be needed when mulesing is phased out and the availability or efficacy of insecticides for control of fly strike decreases. The Australian Sheep Industry CRC has pursued two approaches for the development of new methods to help control blowfly strike. In the first, genetic resistance of sheep to survival and growth of blowfly larvae was examined. Resistance to growth of larvae was heritable (0.29 ± 0.22). The trait was not associated with resistance to internal parasites, nor was it influenced by wool characteristics such as fibre diameter or coefficient of variation of fibre diameter. This new trait differs from resistance to fly strike associated with resistance to fleece rot. Because measurement of the trait is labour intensive, gene markers or correlated measures are needed before it will be suitable for industry adoption. The second approach examined the impact of larval products on the immmune system of the sheep. Larvae suppress the sheep immune system and thereby limit the ability of the sheep to reject the larvae. The immunosuppresive agent is being purified and strategies to abolish its activity are being explored. Abolition of immunosuppression would create opportunities for the development of new vaccines againts blowfly strike.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A limited number of plant rhabdovirus genomes have been fully sequenced, making taxonomic classification, evolutionary analysis and molecular characterization of this virus group difficult. We have for the first time determined the complete genome sequence of 13,188 nucleotides of Datura yellow vein nucleorhabdovirus (DYVV). DYVV genome organization resembles that of its closest relative, Sonchus yellow net virus (SYNV), with six ORFs in antigenomic orientation, separated by highly conserved intergenic regions and flanked by complementary 3′ leader and 5′ trailer sequences. As is typical for nucleorhabdoviruses, all viral proteins, except the glycoprotein, which is targeted to the endoplasmic reticulum, are localized to the nucleus. Nucleocapsid (N) protein, matrix (M) protein and polymerase, as components of nuclear viroplasms during replication, have predicted strong canonical nuclear localization signals, and N and M proteins exclusively localize to the nucleus when transiently expressed as GFP fusions. As in all nucleorhabdoviruses studied so far, N and phosphoprotein P interact when co-expressed, significantly increasing P nuclear localization in the presence of N protein. This research adds to the list of complete genomes of plant-infecting rhabdoviruses, provides molecular tools for further characterization and supports classification of DYVV as a nucleorhabdovirus closely related to but with some distinct differences from SYNV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indospicine toxicosis was reported in sheep, goats and cattle fed on Indigofera, a leguminous plant rich in indospicine. Recent death report on dogs as a result of dietary ingestion of indospicine contaminated camel meat has raised concern about the distribution of this toxin in camels fed on Indigofera. This in vitro study aimed at measuring the degradability of indospicine in Indigofera spicata by camel-foregut fluid and attempted at explaining indospicine accumulation in meat tissue. In the first experiment, in vitro dry matter digestibility and indospicine disappearance were evaluated by using foregut fluid from 15 feral camels. Foregut fluid was collected post mortem from a nearby abattoir. In the second experiment, a composite foregut fluid obtained from three feral camels was used to examine the time-dependent degradation of indospicine. Results indicated that 99 of the dietary indospicine was degraded after 48 h of incubation. The time-dependent degradation study showed rapid degradation (11 µg/h) during the first 18 h of incubation, followed by a much slower rate (2 µg/h) between 18-48 h. Results demonstrated the ability of the camel microbiota to degrade indospicine and suggest the presence of a by-pass mechanism that enables the toxin to escape degradation and reaches the intestine.