3 resultados para GELS

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three experiments were conducted on the use of water retaining amendments under newly-laid turf mats. The work focused on the first 12 weeks of establishment. In soils that already possessed a good water-holding capacity, water retaining amendments did not provide any benefit. On a sand-based profile, a rooting depth of 200 mm was achieved with soil amendment products within three weeks of laying turf. Most products differed in their performance relative to each other at each three weekly measurement interval. Polyacrylamide gels gave superior results when the crystals were incorporated into the soil profile. They were not suitable for broadcasting at the soil/sod interface. Finer grades of crystals were less likely to be subject to excessive expansion than medium grade crystals after heavy rainfall. Turf establishment was more responsive to products at higher application rates, however these higher rates may result in surface stability problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maintaining a high rate of water uptake is crucial for maximum longevity of cut stems. Physiological gel/tylosis formation decreases water transport efficiency in the xylem. The primary mechanism of action for post-harvest Cu2+ treatments in improving cut flower and foliage longevity has been elusive. The effect of Cu2+ on wound-induced xylem vessel occlusion was investigated for Acacia holosericea A. Cunn. ex G. Don. Experiments were conducted using a Cu2+ pulse (5 h, 2.2 mM) and a Cu2+ vase solution (0.5 mM) vs a deionized water (DIW) control. Development of xylem blockage in the stem-end region 10 mm proximal to the wounded stem surface was examined over 21 days by light and transmission electron microscopy. Xylem vessels of stems stood into DIW were occluded with gels secreted into vessel lumens via pits from surrounding axial parenchyma cells. Gel secretion was initiated within 1-2 days post-wounding and gels were detected in the xylem from day 3. In contrast, Cu2+ treatments disrupted the surrounding parenchyma cells, thereby inhibiting gel secretion and maintaining the vessel lumens devoid of occlusions. The Cu2+ treatments significantly improved water uptake by the cut stems as compared to the control. © 2013 Scandinavian Plant Physiology Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An inherently short vase life is a problematic characteristic of cut flowers and foliage for otherwise attractive native Australian Acacia spp. Reasons underlying the poor postharvest water uptake of cut acacia stems have been elusive. A. holosericea was used to investigate possible bacteria-induced and wound-induced xylem occlusion. The effects of bacterial-and wound-induced xylem blockage on water uptake were investigated by light and scanning and transmission electron microscopy. Observations were made on cut stems that stood into either deionised water (DIW; control) or 0.5 mM Cu2+ solution and on stems pulsed with 2.2 mM Cu2+ solution and then stood into DIW. The stem-end region of cut A. holosericea that stood into DIW or Cu2+ solution became covered with bacterial growth after 3 days. Regardless of the bacterial biofilm, the Cu2+ treated stems had improved water relations and vase life. Therefore, the biofilm had little or no effect on cut A. holosericea longevity. Further observations revealed presence of a vessel-occluding substance (gel) originating from axial parenchyma cells in direct physical contact with xylem vessels. The gel exuded into vessel lumens through pit membranes, evidently as a wound-response. Xylem occlusion by gels in A. holosericea may be especially problematic due to an abundance of secretory contact cells relative to xylem elements. Nonetheless, active wound response processes may be the key determinant of short postharvest longevity for this and possibly other cut Acacia spp. Cu2+ treatments, however, disrupted the secretory function of axial parenchyma cells thereby preventing vessel occlusion by the gels.