3 resultados para Bayesian statistical decision theory

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-running datasets from aerial surveys of kangaroos (Macropus giganteus, Macropus [uliginosus, Macropus robustus and Macropus rufus) across Queensland, New South Wales and South Australia have been analysed, seeking better predictors of rates of increase which would allow aerial surveys to be undertaken less frequently than annually. Early models of changes in kangaroo numbers in response to rainfall had shown great promise, but much variability. We used normalised difference vegetation index (NDVI) instead, reasoning that changes in pasture condition would provide a better predictor than rainfall. However, except at a fine scale, NDVI proved no better; although two linked periods of rainfall proved useful predictors of rates of increase, this was only in some areas for some species. The good correlations reported in earlier studies were a consequence of data dominated by large droughtinduced adult mortality, whereas over a longer time frame and where changes between years are less dramatic, juvenile survival has the strongest influence on dynamics. Further, harvesting, density dependence and competition with domestic stock are additional and important influences and it is now clear that kangaroo movement has a greater influence on population dynamics than had been assumed. Accordingly, previous conclusions about kangaroo populations as simple systems driven by rainfall need to be reassessed. Examination of this large dataset has permitted descriptions of shifts in distribution of three species across eastern Australia, changes in dispersion in response to rainfall, and an evaluation of using harvest statistics as an index of density and harvest rate. These results have been combined into a risk assessment and decision theory framework to identify optimal monitoring strategies.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

As climate change continues to impact socio-ecological systems, tools that assist conservation managers to understand vulnerability and target adaptations are essential. Quantitative assessments of vulnerability are rare because available frameworks are complex and lack guidance for dealing with data limitations and integrating across scales and disciplines. This paper describes a semi-quantitative method for assessing vulnerability to climate change that integrates socio-ecological factors to address management objectives and support decision-making. The method applies a framework first adopted by the Intergovernmental Panel on Climate Change and uses a structured 10-step process. The scores for each framework element are normalized and multiplied to produce a vulnerability score and then the assessed components are ranked from high to low vulnerability. Sensitivity analyses determine which indicators most influence the analysis and the resultant decision-making process so data quality for these indicators can be reviewed to increase robustness. Prioritisation of components for conservation considers other economic, social and cultural values with vulnerability rankings to target actions that reduce vulnerability to climate change by decreasing exposure or sensitivity and/or increasing adaptive capacity. This framework provides practical decision-support and has been applied to marine ecosystems and fisheries, with two case applications provided as examples: (1) food security in Pacific Island nations under climate-driven fish declines, and (2) fisheries in the Gulf of Carpentaria, northern Australia. The step-wise process outlined here is broadly applicable and can be undertaken with minimal resources using existing data, thereby having great potential to inform adaptive natural resource management in diverse locations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development of a model, based on Bayesian networks, to estimate the likelihood that sheep flocks are infested with lice at shearing and to assist farm managers or advisers to assess whether or not to apply a lousicide treatment. The risk of lice comes from three main sources: (i) lice may have been present at the previous shearing and not eradicated; (ii) lice may have been introduced with purchased sheep; and (iii) lice may have entered with strays. A Bayesian network is used to assess the probability of each of these events independently and combine them for an overall assessment. Rubbing is a common indicator of lice but there are other causes too. If rubbing has been observed, an additional Bayesian network is used to assess the probability that lice are the cause. The presence or absence of rubbing and its possible cause are combined with these networks to improve the overall risk assessment.