4 resultados para task performance
em Universidade Complutense de Madrid
Resumo:
Dynamically reconfigurable hardware is a promising technology that combines in the same device both the high performance and the flexibility that many recent applications demand. However, one of its main drawbacks is the reconfiguration overhead, which involves important delays in the task execution, usually in the order of hundreds of milliseconds, as well as high energy consumption. One of the most powerful ways to tackle this problem is configuration reuse, since reusing a task does not involve any reconfiguration overhead. In this paper we propose a configuration replacement policy for reconfigurable systems that maximizes task reuse in highly dynamic environments. We have integrated this policy in an external taskgraph execution manager that applies task prefetch by loading and executing the tasks as soon as possible (ASAP). However, we have also modified this ASAP technique in order to make the replacements more flexible, by taking into account the mobility of the tasks and delaying some of the reconfigurations. In addition, this replacement policy is a hybrid design-time/run-time approach, which performs the bulk of the computations at design time in order to save run-time computations. Our results illustrate that the proposed strategy outperforms other state-ofthe-art replacement policies in terms of reuse rates and achieves near-optimal reconfiguration overhead reductions. In addition, by performing the bulk of the computations at design time, we reduce the execution time of the replacement technique by 10 times with respect to an equivalent purely run-time one.
Resumo:
A cross-sectional study was carried out to examine the pattern of changes in the capacity to coordinate attention between two simultaneously performed tasks in a group of 570 volunteers, from 5 to 17 years old. Method: The results revealed that the ability to coordinate attention increases with age, reaching adult values by age 15 years. Also, these results were compared with the performance in the same dual task of healthy elderly and Alzheimer disease (AD) patients found in a previous study. Results: The analysis indicated that AD patients showed a lower dual-tasking capacity than 5-year-old children, whereas the elderly presented a significantly higher ability than 5-year-old children and no significant differences with respect to young adults. Conclusion: These findings may suggest the presence of a working memory system’s mechanism that enables the division of attention, which is strengthened by the maturation of prefrontal cortex, and impaired in AD. (J. of Att. Dis. 2016; 20(2) 87-95)
Resumo:
Reconfigurable hardware can be used to build a multitasking system where tasks are assigned to HW resources at run-time according to the requirements of the running applications. These tasks are frequently represented as direct acyclic graphs and their execution is typically controlled by an embedded processor that schedules the graph execution. In order to improve the efficiency of the system, the scheduler can apply prefetch and reuse techniques that can greatly reduce the reconfiguration latencies. For an embedded processor all these computations represent a heavy computational load that can significantly reduce the system performance. To overcome this problem we have implemented a HW scheduler using reconfigurable resources. In addition we have implemented both prefetch and replacement techniques that obtain as good results as previous complex SW approaches, while demanding just a few clock cycles to carry out the computations. We consider that the HW cost of the system (in our experiments 3% of a Virtex-II PRO xc2vp30 FPGA) is affordable taking into account the great efficiency of the techniques applied to hide the reconfiguration latency and the negligible run-time penalty introduced by the scheduler computations.
Resumo:
Reconfigurable hardware can be used to build multi tasking systems that dynamically adapt themselves to the requirements of the running applications. This is especially useful in embedded systems, since the available resources are very limited and the reconfigurable hardware can be reused for different applications. In these systems computations are frequently represented as task graphs that are executed taking into account their internal dependencies and the task schedule. The management of the task graph execution is critical for the system performance. In this regard, we have developed two dif erent versions, a software module and a hardware architecture, of a generic task-graph execution manager for reconfigurable multi-tasking systems. The second version reduces the run-time management overheads by almost two orders of magnitude. Hence it is especially suitable for systems with exigent timing constraints. Both versions include specific support to optimize the reconfiguration process.