2 resultados para biochemical and ultrastructural changes

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates hypercholesterolemic rabbits, examining the retinal changes in Müller cells and astrocytes as well as their variations after a period of normal blood-cholesterol values induced by a standard diet. New Zealand rabbits were divided into three groups: G0, fed a standard diet; G1A, fed a 0.5% cholesterol-enriched diet for 8 months; and G1B, fed as G1A followed by standard diet for 6 months. Eyes were processed for transmission electron microscopy and immunohistochemistry (GFAP). While G1B resembled G0 more than did G1A, they shared alterations with G1A: a) as in G1A, Müller cells were GFAP+, filled spaces left by axonal degeneration, formed glial scars and their nuclei were displaced to the nerve-fibre layer. The area occupied by the astrocytes associated with the nerve-fibre bundles (AANFB) and by perivascular astrocytes (PVA) in G1A and G1B was significantly lower than in controls. However, no significant differences in PVA were found between G1A and G1B. In G1B, type I PVA was absent and replaced by hypertrophic type II cells; b) Bruch's membrane (BM) was thinner in G1B than in G1A; c) the retinal pigment epithelium (RPE) cytoplasm contained fewer lipids in G1B than in G1A; d) in G1A and G1B choriocapillaris and retinal vessel showed alterations with respect to G0; e) cell death and axonal degeneration in the retina were similar in G1A and G1B. The substitution of a hyperlipemic diet by a standard one normalizes blood-lipid levels. However, the persistence of damage at retinal vessels and BM-RPE could trigger chronic ischemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlantic thermohaline circulation (THC) is an important part of the earth's climate system. Previous research has shown large uncertainties in simulating future changes in this critical system. The simulated THC response to idealized freshwater perturbations and the associated climate changes have been intercompared as an activity of World Climate Research Program (WCRP) Coupled Model Intercomparison Project/Paleo-Modeling Intercomparison Project (CMIP/PMIP) committees. This intercomparison among models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere-ocean general circulation models (AOGCMs) seeks to document and improve understanding of the causes of the wide variations in the modeled THC response. The robustness of particular simulation features has been evaluated across the model results. In response to 0.1-Sv (1 Sv equivalent to 10^6 ms^3 s^-1) freshwater input in the northern North Atlantic, the multimodel ensemble mean THC weakens by 30% after 100 yr. All models simulate sonic weakening of the THC, but no model simulates a complete shutdown of the THC. The multimodel ensemble indicates that the surface air temperature could present a complex anomaly pattern with cooling south of Greenland and warming over the Barents and Nordic Seas. The Atlantic ITCZ tends to shift southward. In response to 1.0-Sv freshwater input, the THC switches off rapidly in all model simulations. A large cooling occurs over the North Atlantic. The annual mean Atlantic ITCZ moves into the Southern Hemisphere. Models disagree in terms of the reversibility of the THC after its shutdown. In general, the EMICs and AOGCMs obtain similar THC responses and climate changes with more pronounced and sharper patterns in the AOGCMs.