13 resultados para Barreira hematoencefalica

em Universidade Complutense de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an experimental study of the sensitivity to 15-MeV neutrons of Advanced Low Power SRAMs (A-LPSRAM) at low bias voltage little above the threshold value that allows the retention of data. This family of memories is characterized by a 3D structure to minimize the area penalty and to cope with latchups, as well as by the presence of integrated capacitors to hinder the occurrence of single event upsets. In low voltage static tests, classical single event upsets were a minor source of errors, but other unexpected phenomena such as clusters of bitflips and hard errors turned out to be the origin of hundreds of bitflips. Besides, errors were not observed in dynamic tests at nominal voltage. This behavior is clearly different than that of standard bulk CMOS SRAMs, where thousands of errors have been reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, the occurrence of multiple events in static tests has been investigated by checking the statistical distribution of the difference between the addresses of the words containing bitflips. That method has been successfully applied to Field Programmable Gate Arrays (FPGAs) and the original authors indicate that it is also valid for SRAMs. This paper presents a modified methodology that is based on checking the XORed addresses with bitflips, rather than on the difference. Irradiation tests on CMOS 130 & 90 nm SRAMs with 14-MeV neutrons have been performed to validate this methodology. Results in high-altitude environments are also presented and cross-checked with theoretical predictions. In addition, this methodology has also been used to detect modifications in the organization of said memories. Theoretical predictions have been validated with actual data provided by the manufacturer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to evaluate the SEE sensitivity of a multi-core processor having implemented ECC and parity in their cache memories. Two different application scenarios are studied. The first one configures the multi-core in Asymmetric Multi-Processing mode running a memory-bound application, whereas the second one uses the Symmetric Multi-Processsing mode running a CPU-bound application. The experiments were validated through radiation ground testing performed with 14 MeV neutrons on the Freescale P2041 multi-core manufactured in 45nm SOI technology. A deep analysis of the observed errors in cache memories was carried-out in order to reveal vulnerabilities in the cache protection mechanisms. Critical zones like tag addresses were affected during the experiments. In addition, the results show that the sensitivity strongly depends on the application and the multi-processsing mode used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a methodology to emulate Single Event Upsets (SEUs) in FPGA flip-flops (FFs). Since the content of a FF is not modifiable through the FPGA configuration memory bits, a dedicated design is required for fault injection in the FFs. The method proposed in this paper is a hybrid approach that combines FPGA partial reconfiguration and extra logic added to the circuit under test, without modifying its operation. This approach has been integrated into a fault-injection platform, named NESSY (Non intrusive ErrorS injection SYstem), developed by our research group. Finally, this paper includes results on a Virtex-5 FPGA demonstrating the validity of the method on the ITC’99 benchmark set and a Feed-Forward Equalization (FFE) filter. In comparison with other approaches in the literature, this methodology reduces the resource consumption introduced to carry out the fault injection in FFs, at the cost of adding very little time overhead (1.6 �μs per fault).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This letter presents an FPGA implementation of a fault-tolerant Hopfield NeuralNetwork (HNN). The robustness of this circuit against Single Event Upsets (SEUs) and Single Event Transients (SETs) has been evaluated. Results show the fault tolerance of the proposed design, compared to a previous non fault- tolerant implementation and a solution based on triple modular redundancy (TMR) of a standard HNN design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamically reconfigurable hardware is a promising technology that combines in the same device both the high performance and the flexibility that many recent applications demand. However, one of its main drawbacks is the reconfiguration overhead, which involves important delays in the task execution, usually in the order of hundreds of milliseconds, as well as high energy consumption. One of the most powerful ways to tackle this problem is configuration reuse, since reusing a task does not involve any reconfiguration overhead. In this paper we propose a configuration replacement policy for reconfigurable systems that maximizes task reuse in highly dynamic environments. We have integrated this policy in an external taskgraph execution manager that applies task prefetch by loading and executing the tasks as soon as possible (ASAP). However, we have also modified this ASAP technique in order to make the replacements more flexible, by taking into account the mobility of the tasks and delaying some of the reconfigurations. In addition, this replacement policy is a hybrid design-time/run-time approach, which performs the bulk of the computations at design time in order to save run-time computations. Our results illustrate that the proposed strategy outperforms other state-ofthe-art replacement policies in terms of reuse rates and achieves near-optimal reconfiguration overhead reductions. In addition, by performing the bulk of the computations at design time, we reduce the execution time of the replacement technique by 10 times with respect to an equivalent purely run-time one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New generation embedded systems demand high performance, efficiency and flexibility. Reconfigurable hardware can provide all these features. However the costly reconfiguration process and the lack of management support have prevented a broader use of these resources. To solve these issues we have developed a scheduler that deals with task-graphs at run-time, steering its execution in the reconfigurable resources while carrying out both prefetch and replacement techniques that cooperate to hide most of the reconfiguration delays. In our scheduling environment task-graphs are analyzed at design-time to extract useful information. This information is used at run-time to obtain near-optimal schedules, escaping from local-optimum decisions, while only carrying out simple computations. Moreover, we have developed a hardware implementation of the scheduler that applies all the optimization techniques while introducing a delay of only a few clock cycles. In the experiments our scheduler clearly outperforms conventional run-time schedulers based on As-Soon-As-Possible techniques. In addition, our replacement policy, specially designed for reconfigurable systems, achieves almost optimal results both regarding reuse and performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present an experimental validation of the reliability increase of digital circuits implemented in XilinxTMFPGAs when they are implemented using the DSPs (Digital Signal Processors) that are available in the reconfigurable device. For this purpose, we have used a fault-injection platform developed by our research group, NESSY [1]. The presented experiments demonstrate that the probability of occurrence of a SEU effect is similar both in the circuits implemented with and without using embedded DSPs. However, the former are more efficient in terms of area usage, which leads to a decrease in the probability of a SEU occurrence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reconfigurable platforms are a promising technology that offers an interesting trade-off between flexibility and performance, which many recent embedded system applications demand, especially in fields such as multimedia processing. These applications typically involve multiple ad-hoc tasks for hardware acceleration, which are usually represented using formalisms such as Data Flow Diagrams (DFDs), Data Flow Graphs (DFGs), Control and Data Flow Graphs (CDFGs) or Petri Nets. However, none of these models is able to capture at the same time the pipeline behavior between tasks (that therefore can coexist in order to minimize the application execution time), their communication patterns, and their data dependencies. This paper proves that the knowledge of all this information can be effectively exploited to reduce the resource requirements and the timing performance of modern reconfigurable systems, where a set of hardware accelerators is used to support the computation. For this purpose, this paper proposes a novel task representation model, named Temporal Constrained Data Flow Diagram (TCDFD), which includes all this information. This paper also presents a mapping-scheduling algorithm that is able to take advantage of the new TCDFD model. It aims at minimizing the dynamic reconfiguration overhead while meeting the communication requirements among the tasks. Experimental results show that the presented approach achieves up to 75% of resources saving and up to 89% of reconfiguration overhead reduction with respect to other state-of-the-art techniques for reconfigurable platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reconfigurable HW can be used to build a hardware multitasking system where tasks can be assigned to the reconfigurable HW at run-time according to the requirements of the running applications. Normally the execution in this kind of systems is controlled by an embedded processor. In these systems tasks are frequently represented as subtask graphs, where a subtask is the basic scheduling unit that can be assigned to a reconfigurable HW. In order to control the execution of these tasks, the processor must manage at run-time complex data structures, like graphs or linked list, which may generate significant execution-time penalties. In addition, HW/SW communications are frequently a system bottleneck. Hence, it is very interesting to find a way to reduce the run-time SW computations and the HW/SW communications. To this end we have developed a HW execution manager that controls the execution of subtask graphs over a set of reconfigurable units. This manager receives as input a subtask graph coupled to a subtask schedule, and guarantees its proper execution. In addition it includes support to reduce the execution-time overhead due to reconfigurations. With this HW support the execution of task graphs can be managed efficiently generating only very small run-time penalties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reconfigurable hardware can be used to build a multitasking system where tasks are assigned to HW resources at run-time according to the requirements of the running applications. These tasks are frequently represented as direct acyclic graphs and their execution is typically controlled by an embedded processor that schedules the graph execution. In order to improve the efficiency of the system, the scheduler can apply prefetch and reuse techniques that can greatly reduce the reconfiguration latencies. For an embedded processor all these computations represent a heavy computational load that can significantly reduce the system performance. To overcome this problem we have implemented a HW scheduler using reconfigurable resources. In addition we have implemented both prefetch and replacement techniques that obtain as good results as previous complex SW approaches, while demanding just a few clock cycles to carry out the computations. We consider that the HW cost of the system (in our experiments 3% of a Virtex-II PRO xc2vp30 FPGA) is affordable taking into account the great efficiency of the techniques applied to hide the reconfiguration latency and the negligible run-time penalty introduced by the scheduler computations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a methodology to build real-time reconfigurable systems that ensure that all the temporal constraints of a set of applications are met, while optimizing the utilization of the available reconfigurable resources. Starting from a static platform that meets all the real-time deadlines, our approach takes advantage of run-time reconfiguration in order to reduce the area needed while guaranteeing that all the deadlines are still met. This goal is achieved by identifying which tasks must be always ready for execution in order to meet the deadlines, and by means of a methodology that also allows reducing the area requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reconfigurable hardware can be used to build multi tasking systems that dynamically adapt themselves to the requirements of the running applications. This is especially useful in embedded systems, since the available resources are very limited and the reconfigurable hardware can be reused for different applications. In these systems computations are frequently represented as task graphs that are executed taking into account their internal dependencies and the task schedule. The management of the task graph execution is critical for the system performance. In this regard, we have developed two dif erent versions, a software module and a hardware architecture, of a generic task-graph execution manager for reconfigurable multi-tasking systems. The second version reduces the run-time management overheads by almost two orders of magnitude. Hence it is especially suitable for systems with exigent timing constraints. Both versions include specific support to optimize the reconfiguration process.