18 resultados para source-sink relationship

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO2 and CH4 causing a net release of CO2 and CH4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic take, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 1, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO2 and CH4) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The seasonal evolution of dissolved inorganic carbon (DIC) and CO2 air-sea fluxes in the Jiaozhou Bay was investigated by means of a data set from four cruises covering a seasonal cycle during 2003 and 2004. The results revealed that DIC had no obvious seasonal variation, with an average concentration of 2035 mu mol kg(-1) C in surface water. However, the sea surface partial pressure of CO2 changed with the season. pCO(2) was 695 mu atm in July and 317 mu atm in February. Using the gas exchange coefficient calculated with Wanninkhof's model, it was concluded that the Jiaozhou Bay was a source of atmospheric CO, in spring, summer, and autumn, whereas it was a sink in winter. The Jiaozhou Bay released 2.60 x 10(11) mmol C to the atmosphere in spring, 6.18 x 10(11) mmol C in summer, and 3.01 x 10(11) mmol C in autumn, whereas it absorbed 5.32 x 10(10) mmol C from the atmosphere in winter. A total of 1.13 x 10(11) mmol C was released to the atmosphere over one year. The behaviour as a carbon source/sink obviously varied in the different regions of the Jiaozhou Bay. In February, the inner bay was a carbon sink, while the bay mouth and the Outer bay were carbon sources. In June and July, the inner and Outer bay were carbon sources, but the strength was different, increasing from the inner to the outer bay. In November, the inner bay was a carbon source, but the bay Mouth was a carbon sink. The outer bay was a weaker CO2 Source. These changes are controlled by many factors, the most important being temperature and phytoplankton. Water temperature in particular was the main factor controlling the carbon dioxide system and the behaviour of the Jiaozhou Bay as a carbon source/sink. The Jiaozhou Bay is a carbon dioxide source when the water temperature is higher than 6.6 degrees C. Otherwise, it is a carbon sink. Phytoplankton is another controlling factor that may play an important role in behaviour as a carbon source or sink in regions where the source or sink nature is weaker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

以‘早久保’(Prunus persica (L.) Batch.)为试材,在果实最后迅速生长期,通过去果处理降低库力,同时设留果对照,并通过环剥和保留相同数量叶片严格控制库源关系,进行了源叶净光合速率(Pn)、叶绿素荧光、叶黄素循环、抗氧化酶及抗氧化同化物日变化的研究。结果表明,和留果对照相比,去果处理显著降低了源叶Pn、气孔导度(gs)和蒸腾速率(E),但显著增加了胞间二氧化碳浓度(Ci)、叶面饱和蒸汽压亏缺(VPDl)和叶片温度(Tl)。光系统II光化学效率(ΦPSII)以及羧化速率(CE)与Pn平行降低。中午去果降低Pn主要归因于非气孔限制。在低库需条件下,开放的PSII反应中心捕获能量的降低以及关闭的PSII反应中心的增加导致了ΦPSII的降低。去果处理叶片中依赖于叶黄素循环的热耗散以及抗氧化系统的上调保护叶片免受光氧化破坏。和留果对照相比,去果处理的叶片有更大的叶黄素循环库,更高的脱环氧化状态以及更高的抗氧化酶活性,包括超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDAR)和脱氢抗坏血酸还原酶(DHAR)的活性以及更高的还原型抗坏血酸(AsA)和还原型谷胱甘肽(GSH)的含量。但与此同时,去果显著增加了过氧化氢(H2O2)以及丙二醛(MDA)的含量,这意味着在去果处理的叶片中可能会发生光氧化破坏。 以一年生‘皇家嘎拉’苹果(Malus domestica Borkh.)组培苗为试材,通过环剥降低库力,进行了源叶Pn、叶绿素荧光、核酮糖-1,5-二磷酸羧化酶/氧化酶(Rubisco)以及光系统II(PSII)复合体关键蛋白PsbA和PsbO含量日变化的研究。和对照相比,环剥显著降低了源叶Pn、gs和E,但是却显著增加了Ci、Tl和淀粉的含量。在低库需下,开放的PSII反应中心捕获能量的降低以及关闭的PSII反应中心的增加导致了ΦPSII的降低。另一方面,环剥降低了光合作用关键酶Rubisco以及PSII复合体PsbA和放氧复合体PsbO的含量。以上结果表明,环剥降低Pn主要归因于非气孔限制。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undaria cultivation on a commercial scale began in China only in the last decade. Today, Undaria pinnatifida is the main species under cultivation concentrated in two provinces, Liaoning and Shandong. The annual production in the early nineties was 8000-13 000 tons dry weight, which is two or three times the pre-1980 figures. The raft cultivation method maintaining the alga at the desired depths generally ensures the light saturated rate of photosynthesis on clear days, and enhances production. Under the cultivated condition, the calculated annual primary productivity of this alga is 160 g C m(-2) y(-1). Translocation of C-14-labelled photoassimilates in rapidly growing sporophyte of Undaria pinnatifida was studied in the open sea. Samples from different parts of the blade with counterparts exposed to tracer ((NaHCO3)-C-14) showed that the translocation that occurred mainly from the tip of the blade to the growing region had obvious source-sink relationship. It took 20 minutes to translocate the labelled photoassimilates from the epidermis, via cortex, to the medulla of the midrib, where rates of translocation averaging 42-48 cm h(-1) were observed in the open sea. Production experiments of tip-cutting of the blades showed an increased production of 9%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large-eddy simulation with transitional structure function(TSF) subgrid model we previously proposed was performed to investigate the turbulent flow with thermal influence over an inhomogeneous canopy, which was represented as alternative large and small roughness elements. The aerodynamic and thermodynamic effects of the presence of a layer of large roughness elements were modelled by adding a drag term to the three-dimensional Navier-Stokes equations and a heat source/sink term to the scalar equation, respectively. The layer of small roughness elements was simply treated using the method as described in paper (Moeng 1984, J. Atmos Sci. 41, 2052-2062) for homogeneous rough surface. The horizontally averaged statistics such as mean vertical profiles of wind velocity, air temperature, et al., are in reasonable agreement with Gao et al.(1989, Boundary layer meteorol. 47, 349-377) field observation (homogeneous canopy). Not surprisingly, the calculated instantaneous velocity and temperature fields show that the roughness elements considerably changed the turbulent structure within the canopy. The adjustment of the mean vertical profiles of velocity and temperature was studied, which was found qualitatively comparable with Belcher et al. (2003, J Fluid Mech. 488, 369-398)'s theoretical results. The urban heat island(UHI) was investigated imposing heat source in the region of large roughness elements. An elevated inversion layer, a phenomenon often observed in the urban area (Sang et al., J Wind Eng. Ind. Aesodyn. 87, 243-258)'s was successfully simulated above the canopy. The cool island(CI) was also investigated imposing heat sink to simply model the evaporation of plant canopy. An inversion layer was found very stable and robust within the canopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

P> Widespread hunting throughout Amazonia threatens the persistence of large primates and other vertebrates. Most studies have used models of limited validity and restricted spatial and temporal scales to assess the sustainability. We use human-demographi

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文首次对我国东北地区稻田和旱田(大豆田)中甲烷(CH_4)和氧化亚氮(N_2O)的排放通量进行观测,研究了环境因素对这两种温室效应气体排放的影响。观测结果表明:稻田在作物生长季节是CH_4的排放源(source),作物被收割之后则成为甲烷的汇(sink)。在作物生长季,稻田的CH_4排放通量变化在2.41-26.1mgCH_4/m~2·h之间,平均通量为14.82mgCH_4/m~2·h。稻田N_2O通量在-116.89-100.69μgN_2O/m~2·h间变化,平均通量为-6.36 μg/m~2·h。旱田完全是N_2O的排放源,通量在3.99-332.3 μg N_2O/m~2·h之间变化,平均通量是88.54 μgN_2O/m~2·h。旱田主要表现为甲烷的汇。稻田中甲烷主要在0-5cm土层中产生。水稻和大豆分别对CH_4和N_2O的排放起着重要作用。稻田甲烷排放通量与温度(特别是气温)有极显著的正相关性,也与土壤中硝态氮含量呈显著正相关/旱田甲烷排放通量与土壤中铵态氮浓度呈显著负相关,而N_2O通量则与铵态氮浓度呈正相关,但有3-4天的时间滞后现象。旱田甲烷和氧化亚氮的排放受土壤含水量的影响。本文还讨论了实验室条件下施肥对稻田土壤CH_4产生作用的影响。厩肥的施入影响较弱,而稻杆的影响则十分强烈。尿素也促进CH_4的产生。100和200μg/g(土)的尿素加入量增大了产甲烷速率和甲烷产量;300μg/g(土)的尿素加入量没有增大产甲烷速率,却延长产甲烷时间,使甲烷产量增加更多。土壤中CH_4和N_2O的产生过程之间似乎呈相互消长关系。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本论文在解析了南黄海生态环境的基础上,首次研究揭示了浮游植物固碳强度的年际变化及生态反馈机制,获得了东中国近海浮游植物固碳强度及对海域源/汇格局的影响程度;同时,用室内模拟实验探讨了重金属和有机污染物胁迫下海水无机碳体系和源汇格局的变化过程,获得了一些新的认识。主要结论如下: 1. 南黄海浮游植物固碳强度具有明显的时空变化特征,与海域光照、流系和水团变化、海水磷的浓度等因素密切相关,并在一定程度上决定海区碳源/汇的性质。2005年秋季浮游植物日固碳量达9.5万吨,1983-2005年间,南黄海浮游植物固碳强度有降低的趋势,与海水关键营养盐-磷的限制有关。东中国近海浮游植物年总固碳量约为2.2亿吨,约占全球近海浮游植物的年固碳量的2.0%。 在综合分析秋季南黄海水文、化学、生物背景的基础上,系统阐明了海域浮游植物固碳体系的生物地球化学机制。结果表明,2005年秋季南黄海浮游植物固碳强度,即初级生产力变化在 97−701 mgC m-2 d-1之间,平均为307 mg C m-2 d-1;与其关系比较密切的环境因子为海水透明度、盐度、pH、氨氮 (NH4-N)、磷酸盐 (PO4-P) 以及Chl a。在这些因素中,PO4-P对初级生产力的影响最大,显然11月份南黄海的磷是浮游植物生长的限制因子,次之的影响因素是Chl a和NH4-N。 对南黄海源汇格局的研究发现,如果除去涌升流较为活跃的站位(A9、B7、B8、B9、C8、C9、 D9和A1),2005年秋季表层海水pCO2与浮游植物固碳强度明显负相关(r=-0.8,n=23, p<0.001)。在南黄海东部浮游植物固碳强度较高,pCO2值较低;而在西部海区浮游植物固碳强度较低的区域,其pCO2值较高。碳源/汇转折点浮游植物固碳强度为230 mgC m-2 d-1,即小于此值,海区为大气二氧化碳的源,反之为汇,并且CO2汇区浮游植物固碳强度平均值约是CO2源区的2倍多;浮游植物固碳作用,在某一时间和空间尺度内,基本决定了海区的源汇格局。估算结果显示,东中国近海浮游植物固碳量约为222×106t a-1,约为东中国近海通过海-气界面总表观碳汇强度每年1369万吨的16.2倍,仅就浮游植物的年固碳量而言,东中国近海约占全球近海浮游植物的年固碳量的2.0%。 研究揭示了近年来南黄海浮游植物固碳强度具有区域与年际变化明显这一显著特点。一般,近岸区(由黄海沿岸水和表层水控制)内,光照是浮游植物固碳的主要限制因子;从2001年后的大多数年份中,中央区(黄海冷水团控制)的浮游植物固碳强度均与磷酸盐浓度显著正相关,但与氮浓度的相关性不大,说明南黄海生态系统普遍存在着磷限制而非氮限制;混合区终年受黄、东海混合水控制,受到光照条件和营养盐浓度同时影响。根据本次观测所获数据,结合以前研究者的调查资料,我们发现从1983年到2005年,南黄海浮游植物优势种由Bacillariophyta变为Pyrrophyta,浮游植物细胞丰度和Chl a明显下降,浮游植物固碳强度几乎下降了二分之一 (由569.50 mgC m-2 d-1下降至306.83 mgC m-2 d-1),说明南黄海在世界边缘海固碳过程中的作用在降低。经过相关水质参数及生态环境变化的分析,以上现象是对关键营养盐磷的限制以及光限制响应的缘故。此外,研究还发现,由于南黄海初级生产者产量下降所引起的一些生态反馈信息,如浮游动物固碳量的下降和鱼类产量的锐减。 2. 室内模拟实验显示,重金属(铅、铜、镉和锌)及有机污染物(乙醇、丙酮、尿素和多灭磷)对水体生物固碳体系有重要影响,较低浓度时可提高水体的固碳能力,相应水体中的DIC、HCO3-和 Pco2 与对照组相比都明显下降 (P<0.01);当污染物达到一定浓度后,水体生物的固碳能力明显下降,其有机碳可降解转化为无机碳。当污染物小于转折浓度水体为大气二氧化碳的汇,反之为源。 水体固碳体系对于不同种类、不同浓度的污染物质所表现的受胁迫情况不同,低浓度各污染物(包括重金属和有机污染物)添加组中(对于重金属为0.1和1µmol•L-1,醇和酮分别为<0.5 mol L-1和<0.75 mol L-1),藻干重及固碳量均要大于初始值,说明适量的外源污染可能会促进藻类生长,提高水体的固碳能力,相应水体中的DIC、HCO3- 和PCO2与对照组相比都明显下降 (P<0.01)。当污染物达到一定浓度后,由于其毒害作用,使得水体内生物的固碳能力下降,甚至分解并转化为无机碳,从会引起DIC、HCO3- 和PCO2含量的升高,其含量上升幅度会因固碳体系对不同种类污染物耐受程度的差异而不同。对于尿素和多灭磷,二者浓度分别达到80和20mgL-1时,水体中二氧化碳各参数仍呈现下降趋势,说明在该浓度范围内,大型藻类(如石莼)仍可利用添加物中的氮和磷,将其做为氮源或磷源,促进水体总固碳量的增加。 污染物胁迫对水体碳源汇能力及格局可起到一定的调控作用,与污染物的浓度密切相关,污染物存在着一转折浓度,分别为5µmol L-1(铜)、20µmol L-1(镉) 0.75mol L-1(酮),当污染物添加小于转折浓度并排除其他影响因素时,水体表现为大气CO2的汇,并且适量的增加污染物浓度会使海洋碳汇能力有所增强;而当污染物超出转折浓度时,水体成为CO2的源,其CO2的释放量是随着污染物浓度的增加而增大。对与研究中其他种类的污染物,在实验室设计范围内,水体始终表现为大气CO2的汇。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

过量氮和磷引起的海水富营养化引起了一系列的生态环境效应,探讨二者的耦合关系对阐明全球海洋生态环境变化机制意义重大。本论文首次探讨了过量氮和磷引起的富营养化对海水无机碳体系的影响,通过室内系统模拟实验,构筑了过量氮和磷与无机碳体系变化的定量耦合关系,在此基础上获得了中国近海典型海域特别是南黄海近十年氮和磷演变引起的无机碳源汇格局变化,获得了以下一系列新的结果和认识: 1、不同营养盐(NO3-、NH4+、NO2-和PO43-)对水体溶解无机碳体系均有重要影响,且影响程度有较大的差异。 在模拟实验中,当NO3-<188 μmol/L,NH4+<126 μmol/L,NO2-<39.5 μmol/L时均可明显提高水体的固碳能力,相应水体中的DIC、HCO3-和 pCO2均较空白对照组时有一定程度的下降。当N浓度达到一定值后,其固碳能力减弱,DIC、HCO3-和pCO2出现相反变化。当NH4+>126 μmol/L和NO2->39.5 μmol/L时pCO2增加,向大气释放CO2。在PO43-添加组中,当浓度小于19.5μmol/L时DIC、pCO2较空白对照组下降,水体表现为大气CO2的汇,其固碳能力高于N组。在孔石莼添加组中,各营养盐组水体的固碳能力均高于空白对照组,相应水体中DIC、HCO3-和pCO2的下降明显。其中,同一营养盐浓度水平下,NH4+组中各无机碳组分的变化幅度明显高于NO3-和NO2-组,PO43-组的无机碳体系变化幅度低于N组。其中,当NO3-、NH4+和NO2-浓度分别在71 μmol/L,49.7 μmol/L和11.7 μmol/L时,pCO2下降明显,水体表现为大气CO2的强汇。对无机碳各参数的变化量与营养盐进行多元回归分析,得到以下统计关系: ⊿DIC=-0.937(⊿PO43-)-0.34(⊿NO3-)-0.46(⊿NH4+)+0.11(⊿NO2-)(R2=0.69, n=30,Sig.<0.05) ⊿HCO3-=-1.357(⊿PO43-)-0.35(⊿NO3-)-0.57(⊿NH4+)-0.013(⊿NO2-)(R2=0.76, n=32, Sig.<0.05) ⊿CO32-=0.344(⊿PO43-)+0.16(⊿NO3-)+0.18(⊿NH4+)+0.076(⊿NO2-)(R2=0.69, n=32, Sig.<0.05) ⊿pCO2=-1.321(⊿PO43-)-0.12(⊿NO3-)-0.31(⊿NH4+)-0.032(⊿NO2-)(R2=0.84, n=35, Sig.<0.01) 2.氮、磷对海水无机碳体系的源汇格局影响主要受控于水体浮游藻类对营养盐的利用。 模拟实验各种情况下Chl-a的浓度均有不同程度的变化。在N组中,当NH4+<126 μmol/L,随着NH4+浓度的增加,Chl-a浓度增加,而高浓度(NH4+>126 μmol/L)的实验组中,Chl-a则随浓度的增加而下降。当NO2-和PO43-的浓度分别大于39.5 μmol/L和19.5 μmol/L时,水体中Chl-a随营养盐浓度的增加而出现下降趋势,不同的是NO3-添加组在实验浓度范围内藻类均出现了不同程度的增长,这可能与浮游藻类对过量营养盐的耐受性不同有关。在低浓度时,PO43-组pCO2的下降最为明显,这与 PO43-组Chl-a的含量较高相一致,其次为NH4+,NO3-高于NO2-,可见在实验水体中PO43-对于藻类新陈代谢作用影响明显,从而作用到无机碳上的影响也就最为明显。对各实验水体⊿Chl-a与无机碳各组分作相关性分析发现,⊿Chl-a与⊿pCO2的相关性最为明显(R2=0.75,p<0.0001),这可能是因为浮游藻类光合作用和分解作用消耗或生成的首先是海水中的游离CO2(即pCO2)。在孔石莼组中,由于大藻对过量营养盐的耐受性较强,因此各组中藻类干重均有一定程度的增长。藻类干重的增加以NH4+最为明显,其次为NO3-和NO2-,这可能与其对N盐的优先吸收顺序NH4+>NO3->NO2-有关。加PO43-组中藻类的干重增加量低于NH4+和NO3-组,这与大藻的生理特性有关。对藻类干重增加量⊿m与⊿DIC作相关性发现,二者相关性明显(R2=0.64,p<0.01),这是由于孔石莼光合作用同时吸收HCO3-和CO2为碳源有关。 3、近年来,中国近海由于海水过量氮磷引起的富营养化,可使大部分海域海水无机碳汇强度增加 应用室内模拟获得的无机碳与氮、磷之间的定量耦合关系,估算了过量氮、磷引起的富营养化条件下,中国近海水体无机碳源汇的变化情况。结果表明,近十年来,由于氮、磷浓度的增加而导致渤海、南黄海、北黄海和东海每年从大气中多吸收0.197×106t C、0.302×106t C、0.039×106t C和2.233×106t C,东中国近海营养要素的含量的变化及组成比例的时间性和地区性差异是造成各海区碳通量差异的重要因素;对2006年南黄海水文、化学、生物与无机碳体系之间的相互关系进行综合分析,可知水体无机碳体系与营养盐水平密切相关。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the effects of dietary composition on methane (CH4) production of sheep can help us to understand grassland degradation resulting in an increase of CH4 emission from ruminant livestock and its resulting significance affecting CH4 source/sink in the grazing ecosystem. The objective of this study was to investigate the effect of forage composition in the diet of sheep in July and August on CH4 production by sheep in the Inner Mongolia steppe. The four diet treatments were: (1) Leymus chinensis and Cleistogenes squarrosa (LC), (2) Leymus chinensis, Cleistogenes squarrosa and concentrate supplementation (LCC), (3) Artemisia frigida and Cleistogenes squarrosa (AC), and (4) Artemisia frigida, Cleistogenes squarrosa and concentrate supplementation (ACC). CH4 production was significantly lower in July than in August (31.4 and 36.2 g per sheep-unit per day, respectively). The daily average CH4 production per unit of digestive dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) increased by 10.9, 11.2 and 42.1% for the AC diet compared with the LC diet, respectively. Although concentrate supplementation in both the AC and LC diets increased total CH4 production per sheep per day, it improved sheep productivity and decreased CH4 production by 14.8, 12.5 and 14.8% per unit of DM, OM and NDF digested by the sheep, respectively. Our results suggested that in degraded grassland CH4 emission from sheep was increased and concentrate supplementation increased diet use efficiency. Sheep-grazing ecosystem seems to be a source of CH4 when the stocking rate is over 0.5 sheep-units ha(-1) during the growing season in the Inner Mongolia steppe.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although respiration of organisms and biomass as well as fossil fuel burning industrial production are identified as the major sources, the CO2 flux is still unclear due to the lack of proper measurements. A mass-balance approach that exploits differences in the carbon isotopic signature (delta(13)C) of CO2 Sources and sinks was introduced and may provide a means of reducing uncertainties in the atmospheric budget. delta(13)C measurements of atmospheric CO2 yielded an average of - 10.3 parts per thousand relative to the Peedee Belemnite standard; soil and plants had a narrow range from -25.09 parts per thousand to -26.51 parts per thousand and averaged at -25.80 parts per thousand. Based on the fact of steady fractionation and enrichment during respiration of mitochondria, we obtained the emission Of CO2 of 35.451 mol m(-2) a(-1) and CO2 flux of 0.2149 mu mol m(-2) s(-)1. The positive CO2 flux indicated the Haibei Alpine Meadow Ecosystem a source rather than a sink. The mass-balance model can be applied for other ecosystem even global carbon cycles because it neglects the complicated process of carbon metabolism, however just focuses on stable carbon isotopic compositions in any of compartments of carbon sources and sinks. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

土壤微生物量、可溶性有机碳与氮虽然只占土壤有机碳、氮总量的较小部分,但可以在土壤全碳、氮变化之前反映土壤微小的变化,又直接参与土壤生物化学转化过程,因而在植被恢复过程中,较其它土壤理化性质等能够更好地指示土壤恢复情况。在青藏高原东缘存在大面积的次生人工林替代灌丛或采伐迹地,而关于这些人工林替代后的生态效果和生态过程的评估却十分缺乏,本研究通过评估岷江上游植被恢复重建过程中典型人工替代次生植被凋落物层与土壤碳、氮等养分大小,动态监测土壤微生物生物量、水溶性碳、氮等指标,结合温度与凋落物输入等影响土壤活性有机碳、氮因子的控制试验,系统分析不同人工替代次生植被土壤碳、氮等养分的差异原因,试图寻找低效人工林优化调控与持续管理技术,为区域生态公益林持续管理提供理论和技术依据。主要结论如下: 1. 通过对不同人工替代次生植被凋落物层和土壤碳、氮分析发现,油松和华山松人工林替代次生灌丛后土壤碳、氮含量较灌丛和阔叶人工林低,主要原因可能为凋落物质量(C/N)较差,而引起碳、氮等元素难以归还土壤。进而通过对不同人工替代次生植被凋落物层和土壤微生物生物量、水溶性有机碳、氮等指标的季节性动态模式的分析,发现各次生植被土壤微生物生物量C、N,P以及土壤水溶性碳、氮含量均呈明显季节性动态,呈现秋季明显大于其它季节,冬季最低,在表层土壤最为明显。 2. 油松、华山松人工林凋落物层和土壤水溶性有机碳(WDOC)、土壤水溶性有机氮(WDON)明显低于灌丛和连香树,土壤微生物生物量C、N也以油松和华山松人工林最低,而落叶类植被,如灌丛、连香树和落叶松之间没有明显差异,说明可利用底物的数量和质量差异是影响各次生植被凋落物分解和土壤微生物活性的主要原因。MBC/OC和MBN/ON能较好地指示土壤微生物活性的变化,MBC/OC凋落层总体以灌丛和连香树人工林最高,油松和华山松人工林最低;而土壤中MBC/OC连香树人工最高,华山松人工林最低。说明以油松和华山松为主的人工造林替代乡土阔叶灌丛造成土壤C、N等养分严重匮乏,微生物活性低下是影响其养分周转的主要原因。 3. 从各次生植被凋落物产生看,凋落物年归还量最大的为华山松人工林(5.1×103 kg ha-1),其次为落叶松人工林(4.8×103 kg ha-1),阔叶灌丛林地凋落物产生总量(4.4×103 kg ha-1)略大于油松人工林(4.2×103 kg ha-1),最小的为连香树人工林(3.6×103 kg ha-1);叶是凋落物的主体,落叶类树种月动态表现为单峰型,高峰主要在10-11月,如落叶松、连香树和灌丛林;常绿的松类月动态不明显,各月基本相同,最为明显地为油松林,华山松人工林略有二个小峰,分别出现在11月和5月。落叶阔叶灌丛的凋落物分解速率大于常绿针叶林,如油松和华山松。结合凋落物的产生量和分解速率,不同树种人工林替代次生阔叶灌丛后,人工油松和华山松林枯落物总贮量和厚度明显大于落叶松人工林、灌丛林和连香树人工林,说明以油松和华山松为主的人工造林替代乡土阔叶灌丛延缓了有机物向土壤的顺利归还,不利于土壤C、N等养分循环。 4. 通过控制地面凋落物和地下根系输入有机物对土壤碳、氮的影响研究发现,(1) 单独去除根系以及根系与地面凋落物同时去除处理1年后对表层(0-10cm)土壤WDOC均没有显著影响,而土壤WDON显著增加,油松人工林土壤微生物生物量C、N显著降低,人工落叶松林没有显著差异,说明油松人工林土壤微生物活性对地下碳输入的依赖大于其它次生植被,而落叶松土壤微生物活性对地下碳输入依赖性较小;去除地面凋落物,明显降低了落叶松人工林土壤WDOC,华山松和连香树土壤WDON均较对照显著减少,油松人工林土壤微生物量C较对照显著减少;双倍增加地面凋落物处理对土壤微生物生物量、WDOC和WDON没有明显地增加,相反,连香树、华山松和油松人工林土壤WDON较对照减少。说明油松人工林微生物活性不仅依赖于地下碳输入,而且对地上有机物输入的依赖性也较大;连香树、落叶松和华山松人工林土壤微生物生物量并没有因地面凋落物的去除减少可能与土壤总有机碳含量及活性均较高有关,而双倍增加地面凋落物反而降低了土壤微生物生物量,说明凋落物覆盖后改变了土壤微气候。 5. 碳矿化累积量与有机碳含量和活性有机碳含量之间存在显著地正相关关系。凋落物碳累积矿化量、矿化速率以连香树最高,油松和华山松人工林次之,落叶阔叶灌丛低于常绿针叶纯林,导致其差异的主要原因可能为凋落物产生的时间动态模式不一样,致使凋落物起始分解时间不一致。而土壤层有机碳矿化速率和矿化量以阔叶落叶灌丛和连香树最高,油松和华山松人工土壤最低,再次证实利用针叶纯林恢复植被阻碍了有机质周转与循环。 6. 凋落物累积矿化量与C/N值呈显著地相关关系,并随着温度的升高而明显增加,而土壤累积矿化量与C/N值没有显著相关关系,说明土壤有机碳质量(C/N)对温度的响应不十分明显。通过双指数模型对不同温度下碳矿化过程进行模拟和计算出活性有机碳与惰性有机碳比例,发现温度升高促进了惰性有机碳向活性有机碳的转化,增加了活性有机碳含量,说明温度升高可促进次生植被凋落物与土壤有机质的分解,进而可影响到林地碳源/汇关系的变化。 综上,通过对不同人工替代次生植被凋落物与土壤C、N大小、以及土壤微生物生物量、水溶性C、N等指标动态变化模式研究,结合温度与凋落物数量输入等影响土壤活性C、N因子的综合分析,以油松和华山松人工纯林对山地植被恢复,延缓或阻碍了有机质周转与循环,造成了土壤肥力退化。对现有低效人工纯林改造,应为地面大量有机物分解创造条件。 Although soil microbial biomass, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are a small part of total soil organic carbon and nitrogen, they can directly participate in the process of soil biochemical translation and indicate the fine changes before changes of soil total organic carbon and nitrogen occur. So, they are good indexes to indicate soil restoration condition during the process of vegetation rehabilitation. There are large areas of secondary vegetations which substitute for indigenous shrubs in the eastern fringe of Qinghai-Tibet Plateau. However, it is not well known that the ecological effect and process after substitution by different secondary plantations. Based on comparison of soil organic and nitrogen contents in litter layer and soil under different secondary vegetations in upper reaches of Minjiang River, soil microbial biomass, DOC and DON in litter layer and soil were investigated in order to analyze the seasonal dynamic. Combining the effects of temperature, litter input and root exclusion on soil microbial biomass, DOC and DON, we also aim to understand the reason and mechanism of difference in soil carbon and nitrogen contents among different secondary vegetations. The study would contribute to comprehensively understanding C and N cycling processes and provide optimal control and sustainable technology of low-effect plantations in these regions. The results are as follows: (1) Organic carbon and nitrogen in litter layers and soil under different substitution plantations were investigated. The results showed that contents of soil organic carbon and nitrogen were lower in P. tabulaeformis (PT) and P. armandi Franch(PA) than those in native broad-leaf shrub and broad-leaf plantation. The low quality (C/N) of litter in PT and PA plantations caused carbon and nitrogen returning to soil difficultly. Seasonal dynamic of soil microbial carbon (MBC),-nitrogen (MBN),-phosphor (MBP), and WDOC and WDON showed similar pattern, which had the highest values in autumn and the lowest values in winter. (2) WDOC and WDON in litter layers and soil under PT and PA plantations were significantly lower than those in native broad-leaf shrub and Cercidiphyllum japonicum Sieb. et Zucc.(CJ). Soil MBC and MBN were also the lowest, while there were no significant differences among deciduous vegetations, i.e. native broad-leaf shrub, CJ and Larix kaempferi Lamb.(LK) plantation. The results suggested that difference in quantity and quality of available substance was main reason that affected the activity of microbe in soil and litter layer. MBC/OC and MBN/ON were good indexes to indicate the change of soil microbial activity. MBC/OC of litter had the highest value under native broad-leaf shrub and CJ plantation, and had the lowest value in PT and PA plantations, while MBC/OC of soil was the highest under CJ plantation, and was the lowest in PT and PA plantations. These results indicated that PT and PA plantations substituting for native broad-leaf shrub caused deficit of carbon and nitrogen in soil, low microbial activity was a main reason influencing the cycling and turnover of carbon and nitrogen in soil. (3) The annual litter fall production, composition, seasonal dynamic and decomposition of five typical secondary stands in upper reaches of Minjiang River were studied in this paper. The annual litter productions were: PA (5.1×103 kg ha-1), LK(4.8×103 kg ha-1), native broad-leaf shrub (4.4×103 kg ha-1), PT(4.2×103 kg ha-1),CJ(3.6×103 kg ha-1). The litter production of leaves in five secondary vegetations occupied a higher percentage in the annual total litter production than those of other components. The litterfall was mostly producted in the cool and dry period (October-November) for deciduous vegetations and relatively equably producted in every season for evergreen coniferous vegetations. The decomposition rate of leaf litter in the broad-leaf stand was higher than those in evergreen coniferous stand. Combined with annual litter fall production and decomposition rate of leaf litter, we found that stock and depth of litter layer were significantly larger in PT and PA plantations than those in native broad-leaf shrub, LK and CJ plantations. The results confirmed that PT and PA plantations substituting for native broad-leaf shrub delayed organic matter returning to soil and hindered cycling of carbon and nitrogen again. (4) We explored plant litter removal, double litter addition, root trenching, and combining root trenching and litter removal treatments to examine the effects of above- and belowground carbon inputs on soil microbial biomass, WDOC and WDON in four secondary plantations. During the experimental period from June 2007 to July 2008, 1 year after initiation of the treatments, WDOC in soil did not vary in root trenching, and combining root trenching and litter removal treatments, while WDON in soil significantly increased compared with CK treatment. Root trenching reduced soil MBC and MBN in PT plantation, while MBC and MBN in soil did not vary in LK plantation. The rasults implied that soil microbial activity was more dependent on belowground carbon input in PT plantation than those in other secondary plantations, on the contrary, soil microbial activity in LK plantation was not dependent on belowground carbon input. Plant litter removal significantly decreased soil WDOC in LK plantation, decreased WDON in PA and CJ plantations, and also significantly reduced soil MBC in PT plantation. However, double litter addition did not increase soil microbial biomass, WDOC and WDON, on the contrary, soil WDON in CJ, PA and PT plantations were decreased. These suggested that soil microbial activity was not only dependent on belowground carbon input, but also on aboveground organic material input. Double litter addition could change the microclimate and result in the decrease of soil microbial activity in CJ, PA and PT plantations. (5) We measured carbon mineralization in a 107 days incubation experiment in 5℃,15℃ and 25℃. Carbon cumulative mineralization was positively correlated with organic matter and labile organic carbon in litter layer and soil. Cumulative carbon mineralization and mineralization rate of litter layers in PT and PA plantations were higher than that in native broad-leaf shrub. This difference between native broad-leaf shrub and coniferous plantations in cumulative carbon mineralization and mineralization rate of litter layers could be attributed to the initiating time of decomposition due to the difference in seasonal dynamic of litter fall production between two types of secondary plantations. However, cumulative carbon mineralization and mineralization rate in soil were the highest in native broad-leaf shrub and CJ plantation, and were the lowest in PT and PA plantations. This also confirmed that PT and PA plantations substituting for native broad-leaf shrub hindered the cycling and turnover of organic matter again. (6) Carbon cumulative mineralization was positively correlated with C/N in litter layer and increased with temperature increasing, while carbon cumulative mineralization was not correlated with C/N in soil. This indicated that soil organic matter quality (C/N) was insensitive to temperature. Applying bi-exponential model, we computed the percent of labile and stable carbon in different temperature incubation and found that temperature increasing would accelerate the transform from stable carbon to labile carbon and increase the percentage of labile organic carbon. This illuminated that temperature incraesing could facilitate the decomposition of litter and soil organic matter in secondary vegetations and hence affect the relationship between carbon source and sink.