211 resultados para sensible heat

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System- (EOS-) Terra/Aqua satellite,as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water,heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

陆地生态系统与大气之间的水热碳交换是物质、能量循环的关键过程,一直以来都为研究者们所关注。进入20 世纪以来,特别是随着人们对全球气候变暖的逐步认识,气候变化对水热碳交换过程的影响及其对气候变化的响应研究更加备受关注。本研究以2004~2006 年近三年的涡度相关系统连续观测数据为依托,分析了雨养玉米农田水热碳通量的动态及其影响因子。研究表明,玉米农田水热通量(WHF) 呈显著的单峰型日变化, 日最大值出现在正午12:00~13:00,WHF 变化同步。潜热通量(LE)的季节变化规律与日变化相似,冬季小夏季大,年最大值与最小值分别出现在7 月和1 月。显热通量(Hs) 季节变化也呈单峰型,但年最大值出现在5 月,这主要与降水以及作物生长有关。半小时尺度上,WHF 主要受辐射控制,而日峰值受辐射峰值以及植被生长的双重影响;日尺度上,只要有降水过程,Hs 就会随土壤水分的增大而减小,降水停止后逐渐恢复。而降水对LE 的影响受到可用能量(AE)的干扰,表现出复杂的变化趋势。总的来说,降水持续时间越长AE 越少,对LE 的抑制越大;季节尺度上,WHF 受热量与水分的双重制约。Hs 随着天气回暖后第一次较大降水过程的出现呈现明显下降,而LE 则呈现相反的变化趋势。随着雨季到来和作物的生长,Hs 在7 月出现低谷,而LE 呈现相反的趋势随着降水量的增加而增大;年际间WHF 的分布规律大体一致,但因气象条件等的差异,特别是降水的差异造成年际间WHF 略有不同。在不同水文年型下,水分因子的影响作用有显著差异,且WHF 对热量与水分条件变化的敏感程度也不相同。欠水年,水分因子的作用更显著,是制约WHF 变化的主要控制因子,WHF 对水分的变化更敏感;而丰水年,水分因子的影响减弱,热量的盈亏决定着WHF 变化的主要方向。在不同水文年型下,水热碳通量对水热条件的变化表现出不同的响应方式,为研究生态系统对气候变化的响应提供了参考。 净碳(C)吸收期,玉米农田净碳交换(NEE)呈显著的日变化,在日出以后由CO2 释放转变为CO2 吸收,12:30 左右达到一天中的吸收峰值,日落前出现相反的转换。而净C 释放期内,NEE 均为正值且无明显日变化。NEE 季节变化也呈单峰型二次曲线,在7 月下旬或8 月上旬达到年最大吸收率。根据NEE 的正负,一年分为三个阶段:两个C 排放期与一个C 吸收期。一般C 吸收期从6月开始到9 月结束,此前此后均为C 排放期。在半小时、日时间尺度上,光通量密度(PPFD)与NEE 有着相似的变化规律,是控制NEE 的主要因子;在日、季节尺度上,叶面积指数(LAI)和气孔导度(gs)是影响NEE 的主要生物因子,且gs 的影响程度随着发育期的变化而变化,而不同年份间LAI 对NEE 的影响没有显著的差异。几乎在所有时间步长上,土壤温度(Ts)均为生态系统呼吸(Re)的主要控制因子,时间尺度愈短,二者的相关性愈好。总的来说,在较短时间尺度上,高PPFD 与夏季低温将会促进C 的吸收,有利于C 累积。 玉米农田日最大净C 吸收速率(NEEmax, daily)以及吸收释放转换点(NEE=0)均受PPFD 控制。NEEmax, daily 出现时间与PPFDmax, daily 出现时间几乎完全一致,当PPFD 达到1 日内极大值时,净C 吸收也相应达到了日最大值。但NEEmax, daily的量值还受到其它因子的影响。当水分条件充足时,还将受到LAI、gs 等生物因子的控制。NEE 由正转为负的转换点也是由PPFD 决定。当PPFD 稳定大于PPFD*( PPFD*=100 μmol•m-2s -1)时,净C 吸收开始;当PPFD 稳定小于PPFD*时,净C 吸收由此结束。1 日内,PPFD 稳定通过PPFD*之间的时间间隔决定了日净C 吸收的时间长度。日净C 吸收的时间越长,吸收量也越大,且有明显的季节变化,7 月最长9 月最短。 按照热量水分状况将三年分组,分为I 组(水分状况相似,热量条件不同)与II 组(热量条件相似,水分状况不同)。 I 组年际间PPFD 波动是造成C 交换格局变化的关键原因。而II 组年际间C 交换格局不同是由降水量及其不同分布引起的土壤含水量(SWC)变化是造成。SWC 可以解释年际间NEE 变异的97%,而大气水汽压亏缺(VPD)可以解释30.7%;温度因子通过影响C 收支中的呼吸项,间接影响着生态系统的NEE,它可以解释年际间NEE 变异的73.9%,也是造成年际间C 交换格局不同的原因之一;另外,PPFD 和发育期早晚以及净C吸收期长度等也同样影响着C 交换格局的变化。综合两组情况来看,由水分条件年际变化引起的NEE 的波动大于能量年际变化引起的波动。总之,在较长时间尺度上,NEE 对SWC 变化比其对PPFD 变化更敏感,说明在半干旱地区土壤水分条件仍然是决定C 交换格局的主导因子。 NEE 与LE 呈线性相关,它们之间的相关性主要受温度和NEE 的控制,温度越高,二者的相关性越弱,而NEE 越大二者相关性越好。同时,作物蒸腾与土壤蒸发的比例也是影响NEE 与LE 之间关系的主要因素。蒸腾作用所占的比例越大,二者的线性关系越显著,而土壤蒸发比例越大,二者的相关性越弱。总的来说,NEE 与LE 之间的线性关系有明显的季节变化,生长季好于非生长季,夏天好于冬天。 总之,雨养玉米农田水热碳通量既具有其它农田生态系统共有的动态特征,也具有其特有特征。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new algorithm based on the multiparameter neural network is proposed to retrieve wind speed (WS), sea surface temperature (SST), sea surface air temperature, and relative humidity ( RH) simultaneously over the global oceans from Special Sensor Microwave Imager (SSM/I) observations. The retrieved geophysical parameters are used to estimate the surface latent heat flux and sensible heat flux using a bulk method over the global oceans. The neural network is trained and validated with the matchups of SSM/I overpasses and National Data Buoy Center buoys under both clear and cloudy weather conditions. In addition, the data acquired by the 85.5-GHz channels of SSM/I are used as the input variables of the neural network to improve its performance. The root-mean-square (rms) errors between the estimated WS, SST, sea surface air temperature, and RH from SSM/I observations and the buoy measurements are 1.48 m s(-1), 1.54 degrees C, 1.47 degrees C, and 7.85, respectively. The rms errors between the estimated latent and sensible heat fluxes from SSM/I observations and the Xisha Island ( in the South China Sea) measurements are 3.21 and 30.54 W m(-2), whereas those between the SSM/ I estimates and the buoy data are 4.9 and 37.85 W m(-2), respectively. Both of these errors ( those for WS, SST, and sea surface air temperature, in particular) are smaller than those by previous retrieval algorithms of SSM/ I observations over the global oceans. Unlike previous methods, the present algorithm is capable of producing near-real-time estimates of surface latent and sensible heat fluxes for the global oceans from SSM/I data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on surface energy flux data measured by eddy covariance methods from China Flux in alpine swamp meadow of the Qinghai Tibetan Plateau in 2005, the daily and seasonal dynamic of surface energy fluxes and their partitioning, as well as abiotic factors effects were analyzed. The results suggested that LE (Latent heat flux) was the largest consumer of the incoming energy. Rn (Net radiation flux) and LE showed clear seasonal variations in sharp hump and up to their maximums in August and July, respectively. H (Sensible heat flux) increased to its peak in August whereafter declined slowly. Precipitation could reduce the components of surface energy. As to Rn and LE, their correlations with abiotic factors were evident while it was not significant in H. Average EBR (Energy balance ratio) was 50.7 %, which was much larger in growing season than non-growing season.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We used an eddy covariance technique to measure evapotranspiration and carbon flux over two very different growing seasons for a typical steppe on the Inner Mongolia Plateau, China. The rainfall during the 2004 growing season (344.7 mm) was close to the annual average (350.43 mm). In contrast, precipitation during the 2005 growing season was significantly lower than average (only 126 mm). The wet 2004 growing season had a higher peak evapotranspiration (4 mm day(-1)) than did the dry 2005 growing season (3.3 mm day(-1)). In 2004, latent heat flux was mainly a consumption resource for net radiation, accounting for similar to 46% of net radiation. However, sensible heat flux dominated the energy budget over the whole growing season in 2005, accounting for 60% of net radiation. The evaporative rate (LE/R-n) dropped by a factor of four from the non-soil stress to soil water limiting conditions. Maximum half-hourly CO2 uptake was -0.68 mg m(-2) s(-1) and maximum ecosystem exchange was 4.3 g CO2 m(-2) day(-1) in 2004. The 2005 drought growing stage had a maximum CO2 exchange value of only -0.22 mg m(-2) s(-1) and a continuous positive integrated-daily CO2 flux over the entire growing season, i.e. the ecosystem became a net carbon source. Soil respiration was temperature dependent when the soil was under non-limiting soil moisture conditions, but this response declined with soil water stress. Water availability and a high vapor pressure deficit severely limited carbon fixing of this ecosystem; thus, during the growing season, the capacity to fix CO2 was closely related to both timing and frequency of rainfall events. (c) 2007 Published by Elsevier Masson SAS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we conducted eddy covariance (EC) measurements of water vapor exchange over a typical steppe in a semi-arid area of the Inner Mongolia Plateau, China. Measurement sites were located within a 25-year-old enclosure with a relatively low leaf area index (similar to 1. 5 m(2) m(-2)) and dominated by Leymus chinensis. Energy balance closure was (H + LE) = 17.09 + 0.69 x (Rn - G) (W/m(2); r(2) = 0.95, n = 6596). Precipitation during the two growing seasons of the study period was similar to the long-term average. The peak evapotranspiration in 2004 was 4 mm d(-1), and 3.5 mm d(-1) in 2003. The maximum latent heat flux was higher than the sensible heat flux, and the sensible heat flux dominated the energy budget at midday during the entire growing season in 2003; latent heat flux was the main consumption component for net radiation during the 2004 growing season. During periods of frozen soil in 2003 and 2004, the sensible heat flux was the primary consumption component for net radiation. The soil heat flux component was similar in 2003 and 2004. The decoupling coefficient (between 0.5 and 0.1) indicates that evapotranspiration was strongly controlled by saturation water vapor pressure deficit (VPD) in this grassland. The results of this research suggest that energy exchange and evapotranspiration were controlled by the phenology of the vegetation and soil water content. In addition, the amount and frequency of rainfall significantly affect energy exchange and evapotranspiration upon the Inner Mongolia plateau. (c) 2007 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To reveal the potential contribution of grassland ecosystems to climate change, we examined the energy exchange over an alpine Kobresia meadow on the northeastern Qinghai-Tibetan Plateau. The annual pattern of energy exchange showed a clear distinction between periods of frozen soil with the daily mean soil temperature at 5 cm (T-s5 ≤ 0 ° C) and non-frozen soil (T-s5 > 0 ° C). More than 80% of net radiation was converted to sensible heat (H) during the frozen soil period, but H varied considerably with the change in vegetation during the non-frozen soil period. Three different sub-periods were further distinguished for the later period: (1) the pre-growth period with Bowen ratio (β) > 1 was characterized by a high β of 3.0 in average and the rapid increase of net radiation associated with the increases of H, latent heat (LE) and soil heat; (2) during the Growth period when β ≤ 1, the LE was high but H fluxes was low with β changing between 0.3 and 0.4; (3) the post-growth period with average β of 3.6 when H increased again and reached a second maximum around early October. The seasonal pattern suggests that the phenology of the vegetation and the soil water content were the major factors affecting the energy partitioning in the alpine meadow ecosystem. © 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic cracking of China no. 3 aviation kerosene using a zeolite catalyst was investigated under supercritical conditions. A three-stage heating/cracking system was specially designed to be capable of heating 0.8 kg kerosene to a temperature of 1050 K and pressure of 7.0 MPa with maximum mass flow rate of 80 g/s. Sonic nozzles of different diameters were used to calibrate and monitor the mass flow rate of the cracked fuel mixture. With proper experiment arrangements, the mass flow rate per unit throat area of the cracked fuel mixture was found to well correlate with the extent of fuel conversion. The gaseous products obtained from fuel cracking under different conditions were also analyzed using gas chromatography. Composition analysis showed that the average molecular weight of the resulting gaseous products and the fuel mass conversion percentage were a strong function of the fuel temperature and were only slightly affected by the fuel pressure. The fuel conversion was also shown to depend on the fuel residence time in the reactor, as expected. Furthermore, the heat sink levels due to sensible heating and endothermic cracking were determined and compared at varying test conditions. It was found that at a fuel temperature of similar to 1050 K, the total heat sink reached similar to 3.4 MJ/kg, in which chemical heat sink accounted for similar to 1.5 MJ/kg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a theoretical model proposed in Part I (Zhu et al., 2001a) is used to simulate the behavior of a twin crank NiTi SMA spring based heat engine, which has been experimentally studied by Iwanaga et al. (1988). The simulation results are compared favorably with the measurements. It is found that (1) output torque and heat efficiency decrease as rotation speed increase; (2) both output torque and output power increase with the increase of hot water temperature; (3) at high rotation speed, higher water temperature improves the heat efficiency. On the contrary, at low rotation speed, lower water temperature is more efficient; (4) the effects of initial spring length may not be monotonic as reported. According to the simulation, output torque, output power and heat efficiency increase with the decrease of spring length only in the low rotation speed case. At high rotation speed, the result might be on the contrary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Ni-B coating was prepared with EN using potassium borohydride reducing agent. The as-plated micro-structure of the coating was confirmed from XRD to be a mixture of amorphous and supersaturated solid solution. Three kinds of phase transformation were observed from the DSC curve. Different from the previous works, the formation of Ni4B3 and Ni2B was found during some transformation processes. The key factors which influence the variation of micro-hardness and micro-structure in deposits are the formation, the size and amount of Ni3B, Ni4B3 and Ni2B. Aging of the deposits treated under some heat treatment conditions occurred at room temperature. Changes of the micro-hardness indicated aging phenomena evidently. the natural aging phenomena are concerned with various kinds of decomposition of borides, especially with Ni4B3 phase. The extent of natural aging depends on the formation and the quantity of Ni(4)B3 and Ni2B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat transfer coefficients for horizontally immersed tubes have been studied in model internally circulating fluidized bed (ICFB) and pilot ICFB incinerators. The characteristics in the ICFB were found to be significantly different from those in a bubbling bed. In ICFB, there is a flowing zone with high velocity, a heat exchange zone, and a moving zone with low velocity. The controllable heat transfer coefficients in ICFB strongly depend on the fluidized velocity in the flowing zone, and also the flow condition in the moving zone. The heat exchange process and suitable bed temperature can be well controlled according to this feature. Based on the results of experiments, a formulation for heat transfer coefficient has been developed. These results were applied to an external superheater of a CFB incinerator with a 450 degreesC steam outlet in a waste-to-energy pilot cogeneration plant of 12 MW in Jiaxing City, China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

发展了测定实验室土样热扩散率的方法,介绍了研制的实验装置和建议的操作程序。给出的实验结果表明土壤热扩散率随土壤空隙率、含水量和温度等许多参数而变化。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional model has been developed based on the experimental results of stainless steel remelting with the laminar plasma technology to investigate the transient thermo-physical characteristics of the melt pool liquids. The influence of the temperature field, temperature gradient, solidification rate and cooling rate on the processing conditions has been investigated numerically. Not only have the appropriate processing conditions been determined according to the calculations, but also they have been predicted with a criterion established based on the concept of equivalent temperature area density (ETAD) that is actually a function of the processing parameters and material properties. The comparison between the resulting conditions shows that the ETAD method can better predict the optimum condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional problem of a thermopiezoelectric material containing an elliptic inclusion or a hole subjected to a remote uniform heat flow is studied. Based on the extended Lekhnitskii formulation for thermopiezoelectricity, conformal mapping and Laurent series expansion, the explicit and closed-form solutions are obtained both inside and outside the inclusion (or hole). For a hole problem, the exact electric boundary conditions on the hole surface are used. The results show that the electroelastic fields inside the inclusion or the electric field inside the hole are linear functions of the coordinates. When the elliptic hole degenerates into a slit crack, the electroelastic fields and the intensity factors are obtained. The effect of the heat how direction and the dielectric constant of air inside the crack on the thermal electroelastic fields are discussed. Comparison is made with two special cases of which the closed solutions exist and it is shown that our results are valid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling study is performed concerning the heat transfer and fluid flow for a laminar argon plasma jet impinging normally upon a flat workpiece exposed to the ambient air. The diffusion of the air into the plasma jet is handled by using the combined-diffusion-coefficient approach. The heat flux density and jet shear stress distributions at the workpiece surface obtained from the plasma jet modeling are then used to study the re-melting process of a carbon steel workpiece. Besides the heat conduction within the workpiece, the effects of the plasma-jet inlet parameters (temperature and velocity), workpiece moving speed, Marangoni convection, natural convection etc. on the re-melting process are considered. The modeling results demonstrate that the shapes and sizes of the molten pool in the workpiece are influenced appreciably by the plasma-jet inlet parameters, workpiece moving speed and Marangoni convection. The jet shear stress manifests its effect at higher plasma-jet inlet velocities, while the natural convection effect can be ignored. The modeling results of the molten pool sizes agree reasonably with available experimental data.