15 resultados para renal physiology

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anterior gradient 2 (Agr2) genes encode secretory proteins, and play significant roles in anterior-posterior patterning and tumor metastasis. Agr2 transcripts were shown to display quite diverse tissue distribution in different species, and little was known about the cellular localization of Agr2 proteins. In this study, we identified an Agr2 homologue from gibe[ carp (Carassius auratus gibelio), and revealed the expression patterns and cellular localization during embryogenesis and in adult tissues. The full-length cDNA of CagAgr2 is 803 nucleotides (nt) with an open reading frame of 510 nt encoding 169 amino acids. The Agr2 C-terminus matches to the class I PDZ-interacting motif, suggesting that it might be a PDZ-binding protein. During embryogenesis, CagAgr2 was found to be transcribed in the mucus-secreting hatching gland from tailbud stage and later in the pharynx region, swim bladder and pronephric duct as revealed by RT-PCR and whole mount in situ hybridization. In the adult fish, its transcription was predominantly confined to the kidney, and lower transcription levels were also found in the intestine, ovary and gills. To further localize the Agr2 protein, the anti-CagAgr2 polyclonal antibody was produced and used for immunofluorescence observation. In agreement with mRNA expression data, the Agr2 protein was localized in the pronephric duct of 3dph larvae. In adult fish, Agr2 protein expression is confined to the renal collecting system with asymmetric distribution along the apical-basolateral axis. The data provided suggestive evidence that fish Agr2 might be involved in differentiation and secretory functions of kidney epithelium. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algal size can affect the rate of metabolism and of growth. Different sized colonies of Nostoc sphaeroides were used with the aim of determining the effects of colony size on photosynthetic physiology and growth. Small colonies showed higher maximum photosynthetic rates per unit chlorophyll, higher light saturation point, and higher photosynthetic efficiency (a) than large colonies. Furthermore, small colonies had a higher affinity for DIC and higher DIC-saturated photosynthetic rates. In addition, small colonies showed higher photosynthetic rates from 5-45degreesC than large colonies. There was a greater decrease in Fv/Fm after exposure to high irradiance and less recovery in darkness for large colonies than for small colonies. Relative growth rate decreased with increasing colony size. Small colonies had less chl a and mass per unit surface area. The results indicate that small colonies can harvest light and acquire DIC more efficiently and have higher maximum photosynthetic rates and growth rates than large colonies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An LC method for the determination of 20 amino acids (AAs), using 1,2-Benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) as fluorescent labeling reagent, has been validated and applied for the analysis of AAs in rat plasma at three different states concerning exercise physiology. Identification of AA derivatives was carried out by LC-MS with electrospray ion (ESI), and the MS-MS cleavage mode of the representative tyrosine (Tyr) derivative was analyzed. Gradient elution on a Hypersil BDS C-18 column gave good separation of the derivatives. Excellent linear responses were observed and good compositional data could be obtained from as little as 50-200 mu L of plasma samples. The contents of 20 AAs in rat plasma of three groups (24 rats, group A: quiet state, group B: at exercising exhaust, group C: 12 h after exercising exhaust) exhibited evident difference corresponding to the physiological states. Facile BCEOC derivatization coupled with LC-FLD-ESI-MS analysis allowed the development of a highly sensitive method for the quantitative analysis of trace level of AAs from plasma or other biochemical samples.