41 resultados para green processes

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strongly reducing organic substances (SROS) and iron oxides exist widely in soils and sediments and have been implicated in many soil and sediment processes. In the present work, the sorptive interaction between goethite and SROS derived from anaerobic decomposition of green manures was investigated by differential pulse voltammetry (DPV). Both green manures, Astragaltus sinicus (Astragalus) and Vicia varia (Vicia) were chosen to be anaerobically decomposed by the mixed microorganisms isolated from paddy soils for 30 d to prepare different SROS. Goethite used in experiments was synthesized in laboratory. The anaerobic incubation solutions from green manures at different incubation time were arranged to react with goethite, in which SROS concentration and Fe(II) species were analyzed. The anaerobic decomposition of Astragalus generally produced SROS more in amount but weaker in reducibility than that of Vicia in the same incubation time. The available SROS from Astragalus that could interact with goethite was 0.69 +/- 0.04, 0.84 +/- 0.04 and 1.09 +/- 0.03 cmol kg(-1) as incubated for 10, 15 and 30 d, respectively, for Vicia, it was 0.12 +/- 0.03, 0.46 +/- 0.02 and 0.70 +/- 0.02 cmol kg(-1). One of the fates of SROS as they interacted with goethite was oxidation. The amounts of oxidizable SROS from Astragalus decreased over increasing incubation time from 0.51 +/- 0.05 cmol kg(-1) at day 10 to 0.39 +/- 0.04 cmol kg(-1) at day 30, but for Vicia, it increased with the highest reaching to 0.58 +/- 0.04 cmol kg(-1) at day 30. Another fate of these substances was sorption by goethite. The SROS from Astragalus were sorbed more readily than those from Vicia, and closely depended upon the incubation time, whereas for those from Vicia, the corresponding values were remarkably less and apparently unchangeable with incubation time. The extent of goethite dissolution induced by the anaerobic solution from Vicia was greater than that from Astragalus, showing its higher reactivity. (c) 2008 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biosorption is an effective method to remove heavy metals from wastewater. In this work, adsorption features of Cladophora fascicularis were investigated as a function of time, initial pH, initial Pb(II) concentrations, temperature and co-existing ions. Kinetics and equilibria were obtained from batch experiments. The biosorption kinetics followed the pseudo-second order model. Adsorption equilibria were well described by the Langmuir and Freundlich isotherm models. The maximum adsorption capacity was 198.5 mg/g at 298 K and pH 5.0. The adsorption processes were endothermic and the biosorption heat was 29.6 kJ/mol. Desorption experiments indicated that 0.01 mol/L Na(2)EDTA was an efficient desorbent for the recovery of Pb(II) from biomass. IR spectrum analysis suggested amido or hydroxy, C=O and C-O could combine intensively with Pb(II). (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biosorption of Cu2+ and Pb2+ by Cladophora fascicularis was investigated as a function of initial pH, initial heavy metal concentrations, temperature and other co-existing ions. Adsorption equilibriums were well described by Langmuir and Freundlich isotherm models. The maximum adsorption capacities were 1.61 mmol/ g for Cu2+ and 0.96 mmol/ g for Pb2+ at 298K and pH 5.0. The adsorption processes were endothermic and biosorption heats calculated by the Langmuir constant b were 39.0 and 29.6 kJ/ mol for Cu2+ and Pb2+, respectively. The biosorption kinetics followed the pseudo- second order model. No significant effect on the uptake of Cu2+ and Pb2+ by co-existing cations and anions was observed, except EDTA. Desorption experiments indicated that Na(2)EDTA was an efficient desorbent for the recovery of Cu2+ and Pb2+ from biomass. The results showed that Cladophora fascicularis was an effective and economical biosorbent material for the removal and recovery of heavy metal ions from wastewater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By recalling mankind's path during past 50 years in the present article, we mainly highlight the significance of environmental issues today. In particular, two major factors leading to environment deterioration in China such as water resources and coal burning are stressed on. Present-day environmental issues are obviously interdisciplinary, of multiple scales and multi-composition in nature. Therefore, a process-based approach for environment research is absolutely necessarily. A series of sub-processes, either physical, chemical or biological, are subsequently analyzed in order to established reasonable parameterization scheme and credible comprehensive model. And we are now in a position to answer questions still open to us, improve existing somewhat empirical engineering approaches and enhance quantitative accuracy in prediction. To illustrate this process-based research approach, three typical examples associated with the Yangtze River Estuary, Loess Plateau and Tenggeli Desert environments have been dealt with respectively. A theoretical model of vertical flow field accounting for runoff and tide interaction has been established to delineate salinity and sediment motion which are responsible for the formation of mouth bar at the outlet and the ecological evolution there. A kinematic wave theory combined with the revised Green-Ampt infiltration formula is applied to the prediction of runoff generation and erosion in three types of erosion region on the Loess Plateau. Three approaches describing water motion in SPAC system in arid areas at different levels have been improved by introducing vegetation sub-models. However, we have found that the formation of a dry sandy layer and biological crust skin are additional primary causes leading to deterioration of water supply and succession of ecological system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For this sake, the macroscopic equations of mechanics and the kinetic equations of the microstructural transformations should form a unified set that be solved simultaneously. As a case study of coupling length and time scales, the trans-scale formulation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Ni-B coating was prepared with EN using potassium borohydride reducing agent. The as-plated micro-structure of the coating was confirmed from XRD to be a mixture of amorphous and supersaturated solid solution. Three kinds of phase transformation were observed from the DSC curve. Different from the previous works, the formation of Ni4B3 and Ni2B was found during some transformation processes. The key factors which influence the variation of micro-hardness and micro-structure in deposits are the formation, the size and amount of Ni3B, Ni4B3 and Ni2B. Aging of the deposits treated under some heat treatment conditions occurred at room temperature. Changes of the micro-hardness indicated aging phenomena evidently. the natural aging phenomena are concerned with various kinds of decomposition of borides, especially with Ni4B3 phase. The extent of natural aging depends on the formation and the quantity of Ni(4)B3 and Ni2B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The partial-dislocation-mediated processes have so far eluded high-resolution transmission electron microscopy studies in nanocrystalline nc Ni with nonequilibrium grain boundaries. It is revealed that the nc Ni deformed largely by twinning instead of extended partials. The underlying mechanisms including dissociated dislocations, high residual stresses, and stress concentrations near stacking faults are demonstrated and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalized planar fault energy (GPFE) curves have been used to predict partial-dislocation-mediated processes in nanocrystalline materials, but their validity has not been evaluated experimentally. We report experimental observations of a large quantity of both stacking faults and twins in nc Ni deformed at relatively low stresses in a tensile test. The experimental findings indicate that the GPFE curves can reasonably explain the formation of stacking faults, but they alone were not able to adequately predict the propensity of deformation twinning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study on wave dynamic processes occurring in muzzle blast flows, which are created by a supersonic projectile released from the open-end of a shock tube into ambient air, is described in this paper. The Euler equations, assuming axisymmetric flows, are solved by using a dispersion-controlled scheme implemented with moving boundary conditions. Three test cases are simulated for examining friction effects on the muzzle flow. From numerical simulations, the wave dynamic processes, including two blast waves, two jet flows, the bow shock wave and their interactions in the muzzle blasts, are demonstrated and discussed in detail. The study shows that the major wave dynamic processes developing in the muzzle flow remain similar when the friction varies, but some wave processes, such as shock-shock interactions, shock-jet interactions and the contact surface instability, get more intensive, which result in more complex muzzle blast flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H (2)/O (2) diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidated. A coupling model, which evaluates heat, mass, momentum and radiative fluxes in the SPAC system, is developed for simulating microclimate over plant and bare soil. Especially, it is focussed on the details of turbulence transfer. For illustration, numerical simulation of the water-heat exchange processes at Shapotou Observatory, GAS, Ninxia Province are conducted, and the computational results show that the laws of land-surface processes are rather typical in the arid areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is assumed that both translational and rotational nonequilibrium cross-relaxations play a role simultaneoulsy in low pressure supersonic cw HF chemical laser amplifier. For two-type models of gas flow medium with laminar and turbulent flow diffusion mixing, the expressions of saturated gain spectrum are derived respectively, and the numerical calculations are performed as well. The numerical results show that turbulent flow diffusion mixing model is in the best agreement with the experimental result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Processes of the onset oscillation in the thermocapillaxy convection under the Earth's gravity are investigated by the numerical simulation and experiments in a floating half zone of large Prandtl number with different volume ratio. Both computational and experimental results show that the steady and axisymmetric convection turns to the oscillatory convection of m=1 for the slender liquid bridge, and to the oscillatory convection before a steady and 3D asymmetric state for the case of a fat liquid bridge. It implies that, there are two critical Marangoni numbers related, respectively, to these two bifurcation transitions for the fat liquid bridge. The computational results agree with the results of ground-based experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics. Most crystal growth processes involve fluid flows, such as flows in the melt, solution or vapor. Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices. The application of devices requires large diameter crystals with a high degree of crystallographic perfection, low defect density and uniform dopant distribution. In this article, the flow models developed in modeling of the crystal growth processes such as Czochralski, ammonothermal and physical vapor transport methods are reviewed. In the Czochralski growth modeling, the flow models for thermocapillary flow, turbulent flow and MHD flow have been developed. In the ammonothermal growth modeling, the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems. In the physical vapor transport growth modeling, the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth. In addition, perspectives for future studies on crystal growth modeling are proposed. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete is heterogeneous and usually described as a three-phase material, where matrix, aggregate and interface are distinguished. To take this heterogeneity into consideration, the Generalized Beam (GB) lattice model is adopted. The GB lattice model is much more computationally efficient than the beam lattice model. Numerical procedures of both quasi-static method and dynamic method are developed to simulate fracture processes in uniaxial tensile tests conducted on a concrete panel. Cases of different loading rates are compared with the quasi-static case. It is found that the inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, an unrealistic result will be obtained if a fracture process including unstable cracking is simulated by the quasi-static procedure.