141 resultados para decomposition

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

在单脉冲激波管上,研究了1,2-二氯乙烷的热裂解.实验的激波条件为:温度区间1020 K<T<1190 K, 压力: P=0.12 MPa,实验时间τ=0.5 ms;实验气体为1,2-二氯乙烷稀释于Ar气中(3.95 mmol/L).以4-甲基-1-环己烯作为对比速率法实验的内标物,用4-甲基-1-环己烯开环反应的速率常数k=1015.3exp(-33400/T) s-1,以及从其产物的浓度推定出实验温度.经激波加热后的实验气体的终产物用气相色谱分析出主要成分为C2H3Cl,指示出主要反应通道为β消去反应.如把所有产物C2H3Cl都归于β消去反应,则可推定出表观之反应速率常数k1a=5.0×1013exp(-30000/T) s-1.对于由C-Cl键断键反应引发的链反应的可能影响做了分析研究.用了一种简便分析可推知在实验的温度范围内的低端(1020 K)链反应的影响可以忽略,而在其高端(1190 K)链反应将给出10%的终产物C2H3Cl的附加浓度,获得真实的β消去反应速率常数则必须把这部分予以扣除.经过这样的校正之后,最后得到CH2ClCH2Clβ消去反应速率常数为k1c=2.3×1013exp(-29200/T) s-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we attempt to characterize protein evolution by residue features which dominate residue substitution in homologous proteins. Evolutionary information contained in residue substitution matrix is abstracted with the method of eigenvalue decomposition. Top eigenvectors in the eigenvalue spectrums are analyzed as function of the level of similarity, i.e. sequence identity (SI) between homologous proteins. It is found that hydrophobicity and volume are two significant residue features conserved in protein evolution. There is a transition point at SI approximate to 45%. Residue hydrophobicity is a feature governing residue substitution as SI >= 45%. Whereas below this SI level, residue volume is a dominant feature. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proper orthogonal decomposition (POD) using method of snapshots was performed on three different types of oscillatory Marangoni flows in half-zone liquid bridges of low-Pr fluid (Pr = 0.01). For each oscillation type, a series of characteristic modes (eigenfunctions) have been extracted from the velocity and temperature disturbances, and the POD provided spatial structures of the eigenfunctions, their oscillation frequencies, amplitudes, and phase shifts between them. The present analyses revealed the common features of the characteristic modes for different oscillation modes: four major velocity eigenfunctions captured more than 99% of the velocity fluctuation energy form two pairs, one of which is the most energetic. Different from the velocity disturbance, one of the major temperature eigenfunctions makes the dominant contribution to the temperature fluctuation energy. On the other hand, within the most energetic velocity eigenfuction pair, the two eigenfunctions have similar spatial structures and were tightly coupled to oscillate with the same frequency, and it was determined that the spatial structures and phase shifts of the eigenfunctions produced the different oscillatory disturbances. The interaction of other major modes only enriches the secondary spatio-temporal structures of the oscillatory disturbances. Moreover, the present analyses imply that the oscillatory disturbance, which is hydrodynamic in nature, primarily originates from the interior of the liquid bridge. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high Reynolds number flow contains a wide range of length and time scales, and the flow domain can be divided into several sub-domains with different characteristic scales. In some sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some sub-domains, the viscosity dissipation scales need to be considered in all directions; in some sub-domains, the viscosity dissipation scales are unnecessary to be considered at all. For laminar boundary layer region, the characteristic length scales in the streamwise and normal directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in the outer region of the boundary layer are L and U, respectively. In the neighborhood region of the separated point, the length scale l<decomposition method is developed for the high Reynolds number flow. First, the whole domain is decomposed to different sub-domains with the different characteristic scales. Then the different dominant equation of all sub-domains is defined according to the diffusion parabolized (DP) theory of viscous flow. Finally these different equations are solved simultaneously in whole computational region. For numerical tests of high Reynolds numerical flows, two-dimensional supersonic flows over rearward and frontward steps as well as an interaction flow between shock wave and boundary layer were solved numerically. The pressure distributions and local coefficients of skin friction on the wall are given. The numerical results obtained by the multiscale-domain decomposition algorithm are well agreement with those by NS equations. Comparing with the usual method of solving the Navier-Stokes equations in the whole flow, under the same numerical accuracy, the present multiscale domain decomposition method decreases CPU consuming about 20% and reflects the physical mechanism of practical flow more accurately.