3 resultados para biomineralization, coastal catchment, subtropical Australia

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports experimental and field studies on the cyclopoid Mesocyclops notius from subtropical Lake Donghu close to the Yangtze river. Mesocyclops notius, a dominant crustacean Zooplankter throughout tropical Australia, was previously considered to be endemic to Australia, but recently, Mesocyclops leuckarti in Lake Donghu was re-identified as M. notius. Laboratory culture experiments were conducted to reveal the effect of temperature (15, 20, 25 and 30 degreesC) on the development, growth and reproduction of M. notius. Temperature was inversely related to development times of eggs, nauplii and copepodites, body length and physiological longevity of adults, and brood size. Body length and physiological longevity of females were greater than those of males at the same temperature. No reproduction took place at 15 degreesC. Production and seasonal cycles of M. notius during 1980-1982 were studied at two sampling stations of Lake Donghu. At the mid-lake station, the annual production and production/biomass (P/B) ratio of M. notius varied between 6.0 and 18.0 g dry wt m(-2) year(-1) and 74.6 and 95.5, respectively. Mesocyclops notius reached their highest density peaks in the warm months (July-October), with a maximum density of 1256 individuals l(-1) at a littoral site. No reproduction and recruitment by AL notius took place during the cold months (December March) when the temperature of the lake water was < 15 degreesC. Mesocyclops notius were more abundant at a littoral station than at a pelagic station, possibly due to different food availability. The higher male:female sex ratio of M. notius at the littoral station was most likely caused by size-selective fish predation on larger females.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on 1997-1998 field investigations in the Changjiang river mouth, rain sampling from the river's upper reaches to the mouth, historical data, and relevant literature, the various sources of Total Nitrogen (TN) and Dissolved Inorganic Nitrogen (DIN) in the Changjiang river catchment and N transport in the Changjiang river mouth were estimated. The export fluxes of various form of were mainly controlled by the river runoff, and the export fluxes of NO3-N, DIN and TN in 1998 (an especially heavy flood year) were 1438 103 tonnes (t) yr(-1) or 795.1 kg km(-2) yr(-1) 1746 10(3) t yr(-1) or 965.4 kg km(-2) yr(-1) and 2849 10(3) t yr(-1) or 1575.3 kg km(-2) yr(-1), respectively. The TN and DIN in the Changjiang river came mainly from precipitation, agricultural nonpoint sources, N lost from fertilizer and soil, and point sources of industrial waste and residential sewage discharge, which were about 56.2% and 62.3%, 15.4% and 18.5%, 17.1% and 14.4%, respectively, of the N outflow at the Changjiang river mouth; maximum transport being in the middle reaches.