59 resultados para artificial cardiac pacing

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a hydrodynamic approach is used to analyse carefully the flow field inChandler loop--the artificial thrombus formation. The results obtained show that near thelower meniscus where the thrombus is formed, there is a back flow accompanied with asecondary flow and its mainflow is toward the meniscus, thus providing a favourable condi-tion for corpuscle aggregation. Our finding is valuable for studying the mechanism ofthrombus formation in artificial organ and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanics property is the foundation of many characters of proteins. Based on intramolecular hydrophobic force network, the representative family character underlying a protein’s mechanics property is described by a simple two-letter scheme. The tendency of a sequence to become a member of a protein family is scored according to this mathematical representation. Remote homologs of the WW-domain family could be easily designed using such a mechanistic signature of protein homology. Experimental validation showed that nearly all artificial homologs have the representative folding and bioactivity of their assigned family. Since the molecular mechanics property is the only consideration in this study, the results indicate its possible role in the generation of new members of a protein family during evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large-insert genomic DNA library is a critical resource for genome-wide genetic dissection of target species. We constructed a high-redundancy bacterial artificial chromosome (BAC) library of a New World monkey species, the black-handed spider monkey

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We constructed a high redundancy bacterial artificial chromosome library of a seriously endangered Old World Monkey, the Yunnan snub-nosed monkey (Rhinopithecus bieti) from China. This library contains a total of 136 320 BAC clones. The average insert size of BAC clones was estimated to be 148 kb. The percentage of small inserts (50-100 kb) is 2.74%, and only 2.67% non-recombinant clones were observed. Assuming a similar genome size with closely related primate species, the Yunnan snub-nosed monkey BAC library has at least six times the genome coverage. By end sequencing of randomly selected BAC clones, we generated 201 sequence tags for the library. A total of 139 end-sequenced BAC clones were mapped onto the chromosomes of Yunnan snub-nosed monkey by fluorescence in-situ hybridization, demonstrating a high degree of synteny conservation between humans and Yunnan snub-nosed monkeys. Blast search against human genome showed a good correlation between the number of hit clones and the size of the chromosomes, an indication of unbiased chromosomal distribution of the BAC library. This library and the mapped BAC clones will serve as a valuable resource in comparative genomics studies and large-scale genome sequencing of nonhuman primates. The DNA sequence data reported in this paper were deposited in GenBank and assigned the accession number CG891489-CG891703.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complement-dependent antibody-mediated acute humoral rejection is the major obstacle of clinical transplantation across ABO incompatibility and human leukocyte antigen presensitization. We previously demonstrated that Yunnan-cobra venom factor (Y-CVF) cou

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly active cobra venom factor (CVF) was isolated from the venom of Naja kaouthia by sequential column chromatography. It displays strong anticomplementary activity, and has 1515 U of anti complementary activity per mg protein. A single dose of 0.1 mg/kg CVF given i.v. to rats completely abrogated complement activity for nearly 5 days. Given 0.02 mg/kg of CVF. the complement activity of rats was reduced by more than 96.5% in 6 It. In guinea pig-to-rat heart transplant model, rats treated with a single dose of 0.05 mg/kg CVF had significantly prolonged xenograft survival (56.12 +/- 6.27 h in CVF-treated rats vs. 0.19 +/- 0.07 h in control rats, P < 0.001). (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present, acute vascular rejection (AVR) remains a primary obstacle inhibiting long-term graft survival in the pig-to-non-human primate transplant model. The present study was undertaken to determine whether repetitive injection of low dose Yunnan-cobra venom factor (Y-CVF), a potent complement inhibitor derived from the venom of Naja kaouthia can completely abrogate hemolytic complement activity and subsequently improve the results in a pig-to-rhesus monkey heterotopic heart transplant model. Nine adult rhesus monkeys received a heterotopic heart transplant from wild-type pigs and the recipients were allocated into two groups: group 1 (n = 4) received repetitive injection of low dose Y-CVF until the end of the study and group 2 (n = 5) did not receive Y-CVF. All recipients were treated with cyclosporine A (CsA), cyclophosphamide (CyP) and steroids. Repetitive Y-CVF treatment led to very dramatic fall in CH50 and serum C3 levels (CH50 < 3 units/C3 remained undetectable throughout the experiment) and successfully prevented hyperacute rejection (HAR), while three of five animals in group 2 underwent HAR. However, the continuous suppression of circulating complement did not prevent AVR and the grafts in group 1 survived from 8 to 13 days. Despite undetectable C3 in circulating blood, C3 deposition was present in these grafts. The venular thrombosis was the predominant histopathologic feature of AVR. We conclude that repetitive injection of low dose Y-CVF can be used to continuously suppress circulating complement in a very potent manner and successfully prevent HAR. However, this therapy did not inhibit complement deposition in the graft and failed to prevent AVR. These data suggest that using alternative pig donors [i.e. human decay accelerating factor (hDAF)-transgenic] in combination with the systemic use of complement inhibitors may be necessary to further control complement activation and improve survival in pig-to-non-human primate xenotransplant model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In xenotransplantation, donor endothelium is the first target of immunological attack. Activation of the endothelial cell by preformed natural antibodies leads to platelet binding via the interaction of the glycoprotein (GP) Ib and von Willebrand factor (vWF). TMVA is a novel GPIb-binding protein purified from the venom of Trimeresurus mucrosquamatus. In this study, the inhibitory effect of TMVA on platelet aggregation in rats and the effect on discordant guinea pig-to-rat cardiac xenograft survival were investigated. Three doses (8, 20 or 40 mug/kg) of TMVA were infused intravenously to 30 rats respectively. Platelet aggregation rate was assayed 0.5, 12, and 24 h after TMVA administration. Wister rats underwent guinea pig cardiac cervical heterotopic transplantation using single dosing of TMVA (20 mug/kg, i.v., 0.5 h before reperfusion). Additionally, levels of TXB2 and 6-keto-PGF(1alpha) within rejected graft tissues were determined by radioimmunoassay. Treatment with TMVA at a dose of 20 or 40 mug/kg resulted in complete inhibition of platelet aggregation 0.5 h after TMVA administration. Rats receiving guinea pig cardiac xenografts after TMVA therapy had significantly prolonged xenograft survival. Histologic and immunopathologic analysis of cardiac xenografts in TMVA treatment group showed no intragraft platelet microthrombi formation and fibrin deposition. Additionally, the ratio of 6-keto-PGF(1alpha) to TXB2 in TMVA treatment group was significantly higher than those in control group. We conclude that the use of this novel GPIb-binding protein was very effective in preventing platelet microthrombi formation and fibrin deposition in a guinea pig-to-rat model and resulted in prolongation of xenograft survival. The increased ratio of PGI(2)/TXA(2) in TMVA treatment group may protect xenografts from the endothelial cell activation and contribute to the prolongation of xenograft survival.