16 resultados para Virus de RNA

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Classical swine fever virus (CSFV) non-structural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp), a key enzyme which initiates RNA replication by a de novo mechanism without a primer and is a potential target for anti-virus therapy. We expressed the NS5B protein in Escherichia coli. The rGTP can stimulate de novo initiation of RNA synthesis and mutation of the GDD motif to Gly-Asp-Asp (GAA) abolishes the RNA synthesis. To better understand the mechanism of viral RNA synthesis in CSFV, a three-dimensional model was built by homology modeling based on the alignment with several virus RdRps. The model contains 605 residues folded in the characteristic fingers, palm and thumb domains. The fingers domain contains an N-terminal region that plays an important role in conformational change. We propose that the experimentally observed promotion of polymerase efficiency by rGTP is probably due to the conformational changes of the polymerase caused by binding the rGTP. Mutation of the GDD to GAA interferes with the interaction between the residues at the polymerase active site and metal ions, and thus renders the polymerase inactive. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although reovirus infection is one of the major virus diseases of grass carp in China, the available knowledge on the structure and function of genes and proteins of the virus is limited. The complete sequence of the S9 genome segment of grass carp hemorrhage virus (GCHV) was determined. The segment consists of 1130 nucleotides and has a large open reading frame (ORF) encoding a protein of 352 amino acids with predicted molecular mass of 37.7 kDa. Amino acid sequence comparison revealed that the deduced protein encoded by GCHV S9 is closely related to the sigma NS proteins of mammalian reovirus (MRV) and avian reovirus (ARV). Secondary structure analysis displayed that the form of alpha -helices (40.1%) and beta -sheets (49.4%) are the richest two contents in the protein encoded by S9, and this protein is predicted to be a nonstructural protein. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we report the codon bias and the mRNA secondary structural features of the hemagglutinin (HA) cleavage site basic amino acid regions of avian influenza virus H5N1 subtypes. We have developed a dynamic extended folding strategy to predict RNA secondar

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In plants and less-advanced animal species, such as C.elegans, introduction of exogenous double-stranded RNA (dsRNA) into cells would trigger degradation of the mRNA with homologous sequence and interfere with the endogenous gene expression. It might represent an ancient anti-virus response which could prevent the mutation in the genome that was caused by virus infection or mobile DNA elements insertion. This phenomenon was named RNA interference, or RNAi. In this study, RNAi was used to investigate the function of basonuclin gene during oogenesis. Microinjection of dsRNA directed towards basonuclin into mouse germinal-vesicle-intact (GV) oocytes brought down the abundance of the cognate mRNA effectively in a time- and concentration-dependent manner. This reduction effect was sequence-specific and showed no negative effect on other non-homologous gene expression in oocytes, which indicated that dsRNA can recognize and cause the degradation of the transcriptional products of endogenous basonuclin gene in a sequence-specific manner. Immunofluorescence results showed that RNAi could reduce the concentration of basonuclin protein to some extent, but the effect was less efficient than the dsRNA targeting towards tPA and cMos which was also expressed in oocytes. This result might be due to the long half life of basonuclin protein in oocytes and the short reaction time which was posed by the limited life span of GV oocytes cultured in vitro. In summary, dsRNA could inhibit the expression of the cognate gene in oocytes at both mRNA and protein levels. The effect was similar to Knock-out technique which was based on homologous recombination. Furthermore, hairpin-style dsRNA targeting basonuclin gene could be produced by transcription from a recombinant plasmid and worked efficiently to deplete the cognate mRNA in oocytes. This finding offered a new way to study the function of basonuclin in the early stage of oogenesis by infection of primordial oocytes with the plasmid expressing hairpin-style basonuclin dsRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2 alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2 alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2 alpha. The interaction between PoPKR and eIF2 alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2 alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five monoclonal antibodies (mAbs) against spring viraemia of carp (SVCV0504, isolated from common carp in China) were produced from mice immunized with purified virus preparations. The virion of SVCV contains five structural proteins, representing the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (Q. Western blotting analysis revealed that three mAbs (1145, IE10, and 11-17) recognized specifically to a single protein of 47 kDa (N), the mAb 3G4 reacted with, two SVCV0504 proteins of 69 kDa (G) and 47 kDa (N), while the mAb 1A9 reacted with three SVCV0504 proteins of 69 kDa (G), 50 kDa (P), and 47 kDa (N). By indirect ELISA, two mAbs (1H5 and 11-17) showed cross-reactivity with pike fry rhabdovirus (PFRV), but no cross-reactions with the Siniperca chuatsi rhabdovirus (SCRV), Scophthalmus maximus rhabdovirus (SMRV), Paralichthys olivaceus rhabdovirus (PoRV) were demonstrated with the five mAbs. Indirect immunofluorescence showed intense fluorescence in the cytoplasm of the SVCV0504-infected epithelioma papulosum cyprini (EPC) cells in areas corresponding to the location of granular structures. The sucrose gradient-purified SVCV0504 particles could be detected successfully by these mAbs using immunodot blotting. mAb 1A9 could completely neutralize 100 TCID50 (50% tissue culture infective dose) of SVCV0504 at a dilution of 1:8. This is the first report of development of the neutralizing mAbs against SVCV. The mAb 1A9 was analyzed further and could be used to successfully detect viral antigens in the infected-EPC cell cultures or in cryosections from experimentally infected crucian carp (Carassius auratus) by immunohistochemistry assay. Furthermore, a flow cytometry procedure for the detection and quantification of cytoplasmic SVCV0504 in cell cultures was developed with mAb 1A9. At 28 h after inoculation with the virus (0.01 PFU/cell), 10.12% of infected cells could be distinguished from the uninfected cells. These mAbs will be useful in diagnostic test development and pathogenesis studies for fish rhabdovirus. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virus infection of mammalian cells activates an innate antiviral immune response characterized by production of interferon (IFN) and the subsequent transcriptional upregulation of IFN-stimulated genes (ISGs) by the JAK-STAT signaling pathway. Here, we report that a fish cell line, crucian carp (Carassius auratus L.) blastulae embryonic (CAB) cells, can produce IFN activity and then form an antiviral state after infection with UV-inactivated grass carp hemorrhagic virus (GCHV), a double-stranded (ds) RNA virus. From UV-inactivated GCHV-infected CAB cells, 15 pivotal genes were cloned and sequenced, and all of them were shown to be involved in IFN antiviral innate immune response. These IFN system genes include the dsRNA signal sensing factor TLR3, IFN, IFN signal transduction factor STAT1, IFN regulatory factor IRF7, putative IFN antiviral effectors Mx1, Mx2, PKR-like, Viperin, IFI56, and other IFN stimulated genes (ISGs) IFI58, ISG15-1, ISG15-2, USP18, Gig1 and Gig2. The identified fish IFN system genes were highly induced by active GCHV, UV-inactivated GCHV, CAB IFN or poly(I).poly(C), and showed similar expression patterns to mammals. The data indicate that an IFN antiviral innate immune response similar to that in mammals exists in the UV-inactivated GCHV-infected CAB cells, and the IFN response contributes to the formation of an antiviral state probably through JAK-STAT signaling pathway. This study provides strong evidence for existence of IFN antiviral innate immune response in fish, and will assist in elucidating the origin and evolution of vertebrate IFN system. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The double-stranded-RNA-dependent protein kinase (PKR) is an important component in an antiviral defence pathway that is mediated by interferon (IFN) in vertebrates. Previously, some important IFN system genes had been identified from an IFN-producing CAB (crucian carp Carassius auratus blastulae embryonic) cells after treatment with UV-inactivated GCHV (grass carp haemorrhage virus). Here, a fish PKR-like gene, named CaPKR-like, is cloned and sequenced from the same virally infected CAB cells. It has 2192 base pairs in length with a largest open reading frame (ORF) encoding a protein of 513 amino acid residues. BLAST search reveals that the putative CaPKR-like protein is most homologous to human PKR and also has a high-level homology with all members of a family of eIF2alpha kinases. Structurally, CaPKR-like possesses a conserved C-terminal catalytic domain of eIF2alpha kinase family and the most similarity to mammalian PKRs. Within its N-terminus, there are no dsRNA-binding domains conserved in mammalian PKRs instead of two putative Z-DNA binding domains (Zalpha). Like mammalian PKRs, CaPKR-like had a very low level of constitutive expression in normal CAB cells but was up-regulated in response to active GCHV, UV-inactivated GCHV and CAB IFN, implying that the transcriptional activation of CaPKR-like by viral infection is mediated possibly by newly produced CAB IFN, which was further supported by using cycloheximide, a potent inhibitor of protein synthesis. The results together suggested that CaPKR-like was the first identified fish gene most similar to mammalian PKRs. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An unknown virus was isolated from massive mortality of cultured threadfin (Eleutheronema tetradactylus) fingerlings. The virus replicated in BF-2 fish cell line and produced a plaque-like cytopathic effect. Electron micrographs revealed non-enveloped, icosahedral particles approximately 70-80 nm in diameter composed of a double capsid layer. Viroplasms and subviral particles approximately 30 run in diameter and complete particles of 70 nm in diameter were also observed in the infected BF-2 tissue culture cells. The virus was resistant upon pH 3 to 11 and ether treatment. It is also stable to heat treatment (3 h at 56 T). Replication was not inhibited by 5-iododeoxyuridine (5-IUdR). Acridine orange stain revealed typical reovirus-like cytoplasmic inclusion bodies. Electrophoresis of purified virus revealed 11 segments of double-stranded RNA and five major structural polypeptides of approximately 136, 132, 71, 41 and 33 kDa. Based on these findings, the virus isolated was identified to belong to the genus Aquareovirus and was designated as threadfin reovirus. This virus differed from a majority of other aquareovirus by its increase in virus infectivity upon exposure to various treatments such as high and low pH, heat (56 degreesC), ether and 5-IUdR. The RNA and virion protein banding pattern of the threadfin reovirus was shown to differ from another Asian isolate, the grass carp hemorrhage reovirus (GCV). Artificial injection of the threadfin reovirus into threadfin fingerlings resulted in complete mortality, whereas sea bass (Lates calcarifer) fingerlings infected via bath route showed severe mortality within a week after exposure. These results indicate that the threadfin virus is another pathogenic Asian aquareovirus isolate that could cross-infect into another marine fish, the sea bass. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete nucleotide sequence of the genome segment S8 of grass carp hemorrhage virus (GCHV) was determined from cDNA corresponding to the viral genomic RNA. It is 1,287 nucleotides in length and contains a large open reading frame that could encode a protein of 409 amino acids with a predicted molecular mass of 44 kD. The S8 was expressed using the pET fusion protein vector and detected by Western blotting analysis using the chicken egg IgY against intact GCHV particles, indicating that S8 encodes a virion protein. Amino acid sequence comparisons revealed that the protein encoded by S8 is closely related to protein alpha2 of mammalian reovirus, suggesting that the deduced protein of S8 is an inner capsid protein. Copyright (C) 2001 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

7The complete nucleotide sequence of M6 gene of grass carp hemorrhage virus (GCHV) was determined. It is 2039 nucleotides in length and contains a single large open reading frame that could encode a protein of 648 amino acids with predicted molecular mass of 68.7 kDa. Amino acid sequence comparison revealed that the protein encoded by GCHV M6 is closely related to the protein mul of mammalian reovirus. The M6 gene, encoding the major outer-capsid protein, was expressed using the pET fusion protein vector in Escherichia coli and detected by Western blotting using chicken anti-GCHV immunoglobulin (IgY). The result indicates that the protein encoded by M6 may share a putative Asn-42-Pro-43 proteolytic cleavage site with mul.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid, sensitive and highly specific detection method for grass carp hemorrhagic virus (GCHV) based on a reverse transcription-polymerase chain reaction (RT-PCR) has been developed. Two pairs of PCR primers were synthesized according to the cloned cDNA sequences of the GCHV-861 strain. For each primer combination, only one specific major product was obtained when amplification was performed by using the genomic dsRNA of GCHV-861 strain. The lengths of their expected products were 320 and 223 bp, respectively. No products were obtained when nucleic acids other than GCHV-861 genomic RNA were used as RT-PCR templates. To assess the sensitivity of the method, dilutions of purified GCHV-861 dsRNA total genome (0.01 pg up to 1000 pg) were amplified and quantities of as little as 0.1 pg of purified dsRNA were detectable when the amplification product was analyzed by 1.5% agarose gel electrophoresis. This technique could detect GCHV-861 not only in infected cell culture fluids, but also in infected grass carp Ctenopharyngodon idellus and rare minnow Gobiocypris rarus with or without hemorrhagic symptoms. The results show that the RT-PCR amplification method is useful for the direct detection of GCHV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Double-stranded RNA (dsRNA) is a virus-associated molecular pattern which induces antiviral innate immune responses and RNA interference (RNAi) in mammals. In invertebrates, RNAi phenomenon has been widely studied, but dsRNA-induced innate immune response is seldom reported. In the present study, two different dsRNAs specific for green fluorescent protein (GFP) and the putative D1 protein of photosystem II (NoPSD) from Nannochloropsis oculata, were employed to challenge Chinese mitten crab Eriocheir sinensis. The temporal changes of phenoloxidase (PO), acid phosphatase (ACP), superoxide dismutase (SOD) and malondialdehyde (MDA) content, as well as the mRNA expression of some immune-related genes were examined in order to estimate the effect of dsRNAs on the innate immunity of E. sinensis. The activities of PO, ACP and SOD significantly increased after dsRNA treatment, whereas malondialdehyde (MDA) content did not change significantly. Among the examined genes, only the mRNA expression of EsALF, an antibacterial peptide in E. sinensis, was significantly up-regulated (about 5 fold, P < 0.05) at 12 h after dsRNA treatment, while no significant expression changes were observed among the other immune genes. The increase of PO, ACP and SOD activities, and mRNA expression level of EsALF after dsRNA stimulation indicate that phenoloxidase, hydrolytic enzyme, antioxidation and EsALF were involved in dsRNA-induced innate immunity, suggesting that broad-spectrum immune responses could be induced by dsRNA in E. sinensis. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA interference (RNAi) is an evolutionarily conserved mechanism by which double-stranded RNA (dsRNA) initiates post-transcriptional silencing of homologous genes. Here we report the amplification and characterisation of a full length cDNA from black tiger shrimp (Penaeus monodon) that encodes the bidentate RNAase III Dicer, a key component of the RNAi pathway. The full length of the shrimp Dicer (Pm Dcr1) cDNA is 7629 bp in length, including a 51 untranslated region (UTR) of 130 bp, a 3' UTR of 77 bp, and an open reading frame of 7422 bp encoding a polypeptide of 2473 amino acids with an estimated molecular mass of 277.895 kDa and a predicted isoelectric point of 4.86. Analysis of the deduced amino acid sequence indicated that the mature peptide contains all the seven recognised functional domains and is most similar to the mosquito (Aedes aegypti) Dicer-1 sequence with a similarity of 34.6%. Quantitative RT-PCR analysis showed that Pm Dcr1 mRNA is most highly expressed in haemolymph and lymphoid organ tissues (P 0.05). However, there was no correlation between Pm Dcr1 mRNA levels in lymphoid organ and the viral genetic loads in shrimp naturally infected with gill-associated virus (GAV) and Mourilyan virus (P > 0.05). Treatment with synthetic dsRNA corresponding to Pm Dcr1 sequence resulted in knock-down of Pm Dcr1 mRNA expression in both uninfected shrimp and shrimp infected experimentally with GAV. Knock-down of Pm Dcr1 expression resulted in more rapid mortalities and higher viral loads. These data demonstrated that Dicer is involved in antiviral defence in shrimp. (c) 2007 Elsevier Ltd. All rights reserved.