3 resultados para Narrative in health

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Differently regioselective chitosan sulfates were prepared according to Hanno Baumann's methods. Their antioxidant potencies were investigated employing various established in vitro systems, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH)/superoxide/hydroxyl radicals scavenging, reducing power, iron ion chelating and total antioxidant activity. All kinds of sulfated chitosans (HCTS, TSCTS, SCTS, TCTS) showed strong inhibitory activity toward superoxide radical by the PMS-NADH system compared to Vc. According to the above-mentioned order their IC50 were 0.012, 0.040, 0.015, 0.022mg/mL, respectively, however, scavenging activity of Vc on superoxide radical was 68.19% at 2.0mg/mL. Scavenging activity of superoxide radical was found to be in the order of HCTS > SCTS > TCTS > TSCTS > Vc. Furthermore, all kinds of sulfated chitosans exhibited strong concentration-dependent inhibition of deoxyribose oxidation. Except for HCTS, others had stronger scavenging activity on hydroxyl radical than Vc. Scavenging effect of TSCTS on 1, 1 -diphenyl-2-picrylhydrazy] radical was little lower than that of BHA, but better than that of others. All kinds of sulfated chitosans were efficient in the reducing power, especially TSCTS. TSCTS and TCTS showed considerable ferrous ion chelating potency. The data obtained in vitro models clearly establish the antioxidant potency of all kinds of sulfated chitosans. These in vitro results suggested the possibility that sulfated chitosans could be effectively employed as ingredient in health or functional food, to alleviate oxidative stress. However, comprehensive studies need to be conducted to ascertain the in vivo safety of sulfated chitosans in experimental animal models. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The antioxidant potency of chitin derivative-glucosamine hydrochloride was investigated employing various established in vitro systems. Such as superoxide (O-2(center dot-))/hydroxyl ((OH)-O-center dot)-radical scavenging, reducing power, and ferrous ion chelating potency. As expected, we obtained several satisfying results, its follows: first, glucosamine hydrochloride had pronounced scavenging effect on superoxide radical. For example, the O-2(center dot-) scavenging activity of glucosamine hydrochloride was 83.74 parts per thousand at 0.8 mg/mL. Second, the (OH)-O-center dot scavenging activity of glucosamine hydrochloride was also strong and was about 54.89% at 3.2 mg/mL. Third, the reducing power of glucosamine hydrochloride was more pronounced. The reducing power of glucosamine hydrochloride was 0.632 at 0.75 mg/mL. However, ferrous ion-chelating potency was soft. Furthermore, ferrous ion-chelating potency, the scavenging rate of radical, and the reducing power of glucosamine hydrochloride increased with their increasing concentration, and they were concentration dependent. The multiple antioxidant activity of glucosamine hydrochloride was evident as it showed considerable reducing power, superoxide/hydroxyl-radical scavenging ability. These in vitro results suggest the possibility that glucosamille hydrochloride could be effectively employed its an ingredient in health or functional food, to alleviate oxidative stress. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A capillary electrophoresis (CE) method has been developed for the determination of six bioactive flavonoids that are commonly found in health foods: hesperidin, hyperin, isorhamnetin, kaempferol, quercetin and rutin. The effects of several parameters, such as pH, buffer concentration, separation voltage and UV detector wavelength, were investigated to find the optimal conditions. Using a HbBCh-NaiB-iO? buffer (pH 9.2), the analytes can be separated within 8 min. The relative standard deviations of migration times in eight injections were between 0.77% and 0.93%, and those of the peak areas ranged from 3.8% to 8.6%. A high reproducibility and excellent linearity was observed over two orders of magnitude, with detection limits (S/N = 3) ranging from 0.34ug ml to 2.9ug ml for all the six analytes. Recoveries ranged from 80.4 % to 113.9 %. The new method is simple, reproducible and sensitive. No solid phase extraction for sample pretreatment is necessary. Analysis results are accurate in application to bee pollens.