250 resultados para Mitochondrial genome

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mitochondrial DNA of the rice frog, Fejervarya limnocharis (Amphibia, Anura), was obtained using long-and-accurate polymerase chain reaction (LA-PCR) combining with subcloning method. The complete nucleotide sequence (17,717 bp) of mitochondrial genome was determined subsequently. This mitochondrial genome is characterized by four distinctive features: the translocation of ND5 gene, a cluster of rearranged tRNA genes (tRNA(Thr), tRNA(Pro), tRNA(Leu) ((CUN))) a tandem duplication of tRNA(Mer) gene, and eight large 89-bp tandem repeats in the control region, as well as three short noncoding regions containing two repeated motifs existing in the gene cluster of ND5/tRNA(Thr)/tRNA(Pro)/tRNA(Leu)/tRNA(Phe). The tandem duplication of gene regions followed by deletions of supernumerary genes can be invoked to explain the shuffling of tRNAM(Met) and a cluster of tRNA and ND5 genes, as observed in this study. Both ND5 gene translocation and tandem duplication of tRNA(Met) were first observed in the vertebrate mitochondrial genomes. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family repre

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete mitochondrial genomes of the primary cancerous, matched paracancerous normal and distant normal tissues from 10 early-stage breast cancer patients were analyzed in this study, with special attempt (i) to investigate whether the reported high

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its numerous environmental extremes, the Tibetan Plateau -the world's highest plateau-is one of the most challenging areas of modern human settlement. Archaeological evidence dates the earliest settlement on the plateau to the Late Paleolithic, whi

Relevância:

100.00% 100.00%

Publicador:

Resumo:

研究测定了西藏那曲(4,500 m)、云南中甸(3,300 m)、云南德钦(3,300 m)地区3匹藏马线粒体全基因组序列.3个地区的藏马线粒体基因组全长以及结构均与韩国济州岛的马类似,但比瑞典马线粒体基因组短.藏马基因组在DNA序列上的两两相似性达99.3%.通过对线粒体蛋白编码区的分析发现,NADH6基因的蛋白序列在三匹藏马中均表现快速进化的现象.这表明NADH6基因在藏马高原适应进化过程中扮演着重要角色.此外,利用7匹藏马的D-loop区域序列以及与其亲缘关系较近的马的序列首次构建的藏马的系统发育树显示,那曲藏马与中甸、德钦藏马属于不同的分支,且存在较大的遗传多样性,表明藏马可能为多地区起源.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S) 22 tRNA genes, and a noncoding control region. We use these data and homologous sequence data from multiple other ostariophysan fishes in a phylogenetic evaluation to test hypothesis pertaining to codon usage pattern of O. bidens mitochondrial protein genes as well as to re-examine the ostariophysan phylogeny. The mitochondrial genome of O. bidens reveals an alternative pattern of vertebrate mitochondrial evolution. For the mitochondrial protein genes of O. bidens, the most frequently used codon generally ends with either A or C, with C preferred over A for most fourfold degenerate codon families; the relative synonymous codon usage of G-ending codons is greatly elevated in all categories. The codon usage pattern of O. bidens mitochondrial protein genes is remarkably different from the general pattern found previously in the relatively closely 9 related zebrafish and most other vertebrate mitochondria. Nucleotide bias at third codon positions is the main cause of codon bias in the mitochondrial protein genes of O. bidens, as it is biased particularly in favor of C over A. Bayesian analysis of 12 concatenated mitochondrial protein sequences for O. bidens and 46 other teleostean taxa supports the monophyly of Cypriniformes and Otophysi and results in a robust estimate of the otophysan phylogeny. (C) 2007 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete sequence of the 16,539 nucleotide mitochondrial genome from the single species of the catfish family Cranoglanididae, the helmet catfish Cranoglanis bouderius, was determined using the long and accurate polymerase chain reaction (LA PCR) method. The nucleotide sequences of C. bouderius mitochondrial DNA have been compared with those of three other catfish species in the same order. The contents of the C. bouderius mitochondrial genome are 13 protein-coding genes, two ribosomal RNA and 22 transfer RNA genes, and a non-coding control region, the gene order of which is identical to that observed in most other vertebrates. Phylogenetic analyses for 13 otophysan fishes were performed using Bayesian method based on the concatenated mtDNA protein-coding gene sequence and the individual protein-coding gene sequence data set. The competing otophysan topologies were then tested by using the approximately unbiased test, the Kishino-Hasegawa test, and the Shimodaira-Hasegawa test. The results show that the grouping ((((Characifonnes, Gymnotiformes), Siluriformes), Cyprinifionnes), outgroup) is the most likely but there is no significant difference between this one and the other alternative hypotheses. In addition, the phylogenetic placement of the family Cranoglanididae among siluriform families was also discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand the systematic status of Larimichthys crocea in the Percoidei, we determined the complete mitochondrial (mt) genome sequence using 454 sequencing-by-synthesis technology. The complete mt genome is 16,466 bp in length including the typical structure of 22 tRNAs, 2 rRNAs, 13 protein-coding genes and the noncoding control region (CR). Further sequencing for the complete CR was performed using the primers Cyt b-F and 12S-R on six L crocea individuals and two L polyactis individuals. Interestingly, all seven CR sequences from L crocea were identical while the three sequences from L polyactis were distinct (including one from GenBank). Although the conserved blocks such as TAS and CSB-1, -2, and -3 are readily identifiable in the control regions of the two species, the typical central conserved blocks CSB-D, -E, and -F could not be detected, while they are found in Cynoscion acoupa of Sciaenidae and other Percoidei species. Phylogenetic analysis shows that L crocea is a relatively recently emerged species in Sciaenidae and this family is closely related to family Pomacanthidae within the Percoidei. L crocea, as the first species of Sciaenidae with complete mitochondrial genome available, will provide important information on the molecular evolution of the group. Moreover, the genus-specific pair of primers designed in this study for amplifying the complete mt control region will be very useful in studies on the population genetics and conservation biology of Larimichthys. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial genome sequence and structure analysis has become a powerful tool for studying molecular evolution and phylogenetic relationships. To understand the systematic status of Trichiurus japonicus in suborder Scombroidei, we determined the complete mitochondrial genome (mitogenome) sequence using the long-polymerase chain reaction (long-PCR) and shotgun sequencing method. The entire mitogenome is 16,796 by in length and has three unusual features, including (1) the absence of tRNA(Pro) gene, (2) the possibly nonfunctional light-strand replication origin (O-L) showing a shorter loop in secondary structure and no conserved motif (5'-GCCGG-3'), (3) two sets of the tandem repeats at the 5' and 3' ends of the control region. The three features seem common for Trichiurus mitogenomes, as we have confirmed them in other three T. japonicus individuals and in T nanhaiensis. Phylogenetic analysis does not support the monophyly of Trichiuridae, which is against the morphological result. T. japonicus is most closely related to those species of family Scombridae; they in turn have a sister relationship with Perciformes members including suborders Acanthuroidei, Caproidei, Notothenioidei, Zoarcoidei, Trachinoidei, and some species of Labroidei, based on the current dataset of complete mitogenome. T japonicus together with T. brevis, T lepturus and Aphanopus carbo form a clade distinct from Lepidopus caudatus in terms of the complete Cyt b sequences. T. japonicus mitogenome, as the first discovered complete mitogenome of Trichiuridae, should provide important information on both genomics and phylogenetics of Trichiuridae. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complete mitochondrial genome plays an important role in the accurate revelation of phylogenetic relationships among metazoans. Here we present the complete mitochondrial genome sequence from a sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea), which is the first representative from the subclass Aspidochirotacea. The mitochondrial genome of A. japonicus is 16,096 bp in length. The heavy strand consists of 31.8% A, 20.2% C, 17.9% G, and 30.1% T bases (AT skew = 0.027: GC skew = 0.062). It contains thirteen protein-coding genes (PCGs), twenty-two transfer RNA genes, and two ribosomal RNA genes. There are a total of 3793 codons in all thirteen mitochondrial PCGs, excluding incomplete termination codons. The most frequently used amino acid is Leu (15.77%), followed by Set (9.73%), Met (8.62%), Phe (7.94%), and Ala (7.28%). Intergenetic regions in the mitochondrial genome of A. japonicus are 839 bp in total, with three relatively large regions of Unassigned Sequences (UAS) greater than 100 bp. The gene order of A. japonicus is identical to that observed in the five studied sea urchins, which confirms that the gene order shared by the two classes (Holothuroidea and Echinoidea) is a ground pattern of echinoderm mitochondrial genomes. Bayesian tree based on the cob gene supports the following relationship: (outgroup, (Crinoids, (Asteroids, Ophiuroids, (Echinoids, Holothuroids)))). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the commercial and ecological importance of the Asian paddle crab, Charybdis japonica, there is a clearly need for genetic and molecular research on this species. Here, we present the complete mitochondrial genome sequence of C. japonica, determined by the long-polymerase chain reaction and primer walking sequencing method. The entire genome is 15,738 bp in length, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, plus the putative control region, which is typical for metazoans. The total A+T content of the genome is 69.2%, lower than the other brachyuran crabs except for Callinectes sapidus. The gene order is identical to the published marine brachyurans and differs from the ancestral pancrustacean order by only the position of the tRNA (His) gene. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes strongly support the monophyly of Dendrobranchiata and Pleocyemata, which is consistent with the previous taxonomic classification. However, the systematic status of Charybdis within subfamily Thalamitinae of family Portunidae is not supported. C. japonica, as the first species of Charybdis with complete mitochondrial genome available, will provide important information on both genomics and molecular ecology of the group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete mitochondrial (mt) genome sequence of Oratosquilla oratoria (Crustacea: Malacostraca: Stomatopoda) was determined; a circular molecule of 15,783 bp in length. The gene content and arrangement are consistent with the pancrustacean ground pattern. The mt control region of O. oratoria is characterized by no GA-block near the 3' end and different position of [TA(A)]n-blocks compared with other reported Stomatopoda species. The sequence of the second hairpin structure is relative conserved which suggests this region may be a synapomorphic character for the Stomatopoda. In addition, a relative large intergenic spacer (101 bp) with higher A + T content than that in control region was identified between the tRNA(Glu) and tRNA(Phe) genes. Phylogenetic analyses based on the current dataset of complete mt genomes strongly support the Stomatopoda is closely related to Euphausiacea. They in turn cluster with Penaeoidea and Caridea clades while other decapods form a separate group, which rejects the monophyly of Decapoda. This challenges the suitability of Stomatopoda as an outgroup of Decapoda in phylogenetic analyses. The basal position of Stomatopoda within Eumalacostraca according to the morphological characters is also questioned. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: There are many advantages to the application of complete mitochondrial (mt) genomes in the accurate reconstruction of phylogenetic relationships in Metazoa. Although over one thousand metazoan genomes have been sequenced, the taxonomic sampling is highly biased, left with many phyla without a single representative of complete mitochondrial genome. Sipuncula (peanut worms or star worms) is a small taxon of worm-like marine organisms with an uncertain phylogenetic position. In this report, we present the mitochondrial genome sequence of Phascolosoma esculenta, the first complete mitochondrial genome of the phylum. Results: The mitochondrial genome of P. esculenta is 15,494 bp in length. The coding strand consists of 32.1% A, 21.5% C, 13.0% G, and 33.4% T bases (AT = 65.5%; AT skew = -0.019; GC skew = -0.248). It contains thirteen protein-coding genes (PCGs) with 3,709 codons in total, twenty-two transfer RNA genes, two ribosomal RNA genes and a non-coding AT-rich region (AT = 74.2%). All of the 37 identified genes are transcribed from the same DNA strand. Compared with the typical set of metazoan mt genomes, sipunculid lacks trnR but has an additional trnM. Maximum Likelihood and Bayesian analyses of the protein sequences show that Myzostomida, Sipuncula and Annelida (including echiurans and pogonophorans) form a monophyletic group, which supports a closer relationship between Sipuncula and Annelida than with Mollusca, Brachiopoda, and some other lophotrochozoan groups. Conclusion: This is the first report of a complete mitochondrial genome as a representative within the phylum Sipuncula. It shares many more similar features with the four known annelid and one echiuran mtDNAs. Firstly, sipunculans and annelids share quite similar gene order in the mitochondrial genome, with all 37 genes located on the same strand; secondly, phylogenetic analyses based on the concatenated protein sequences also strongly support the sipunculan + annelid clade (including echiurans and pogonophorans). Hence annelid "key-characters" including segmentation may be more labile than previously assumed.