14 resultados para Gene mapping

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congenital microphthalmia is a developmental ocular disorder and might be caused by the mutations in the genes involved in eye development. To uncover the genetic cause in a six-generation Chinese pedigree with autosomal dominant congenital microphthalmia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene mapping of a mouse coat mutation has been investigated. First, 100 10-bp random primers were used to amplify DNA, but the mutation could not be located by this method because there were no correlation between the amplified products and coat phenotypes. Second, by using Idh1, Car2, Mup1, Pgb1, Hbb, Es10, Es1, Mod1, Gdc1, Ce2, Es3 as genetic markers, linkage test crosses (two-point test) consisting of intercrossing uncovered BALB/c mice (homozygotes) to CBA/N and C57BL/6 mice with normal hair and backcrossing the heterozygotes of the F1 to the uncovered BALB/c mice were made. It was soon evident that the mutation was linked to Es3 on chromosome 11. Furthermore, three-point test was made by using Es3 and D11Mit8 (a microsatellite DNA) as genetic markers. The result showed that the mutation was linked to Es3 with the percentage recombination of (7.89 +/- 2.19)%, and linked to D11Mit8 with the percentage recombination of (26.38 +/- 3.57)%. The percentage recombination between Es3 and D11Mit8 was (32.90 +/- 3.81)%. The mutation was named Uncovered, with the symbol Uncv. According to the recombinations, the loci order was D11Mit8-26.30 +/- 3.57- Uncv-7.89 +/- 2.19-Es3. From the location on the chromosome, it was concluded that the mutation was a new mutation which affected the skin and hair structure of mouse. The Uncv has entered MGD (Mouse Genome Database).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

  水稻(Oryza sativa L.) 颖花开裂 (split rice spikelet,SRS) 突变体是从水稻品系 8902s 花药培养得到的双单倍体群体中筛选出的同源异型突变体。以窄叶青8号为母本,SRS突变体为父本配制杂交组合,其F2群体中正常植株和突变植株的分离比例符合3:1,说明颖花突变性状是由单隐性基因决定的。 利用扫描电镜观察 SRS突变体花器官形态发生过程。其性状表现为内外稃变软变长,不抱合,在外稃基部又着生一朵花,两浆片基部融合,质地呈稃片状,雄蕊和雌蕊形态正常,且可育。该突变体的突变性状与拟南芥APETALA1的突变表现相似,说明两者在形态建成方面具有相似之处。由于 SRS 突变体第一轮和第二轮花器官发生了变化,根据 ABC 模型,srs-l基因应属于同源异型 A 组基因。 采用BSA法在F2群体中建立DNA正常池和突变池,利用RAPD技术筛选与突变基因srs-l连锁的分子标记。从520条随机引物中筛选出了引物S465能在两池间扩增出分子量为900 bp的差异片段,并证明其在F2群体中表现共分离。将此DNA片段克隆后作为RFLP探针pS465A,该探针与srs-l基因紧密连锁,在DH群体的RFLP分子连锁图谱上成功地将它们定位于第三染色体上。 本研究是利用水稻同源异型突变体为材料,研究水稻花器官发育基因的首例报道。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cross-species chromosome painting with probes derived from flow-sorted dog and human chromosomes was used to construct a high-resolution comparative map for the pig. In total 98 conserved autosomal segments between pig and dog were detected by probes specific for the 38 autosomes and X Chromosome of the dog. Further integration of our results with the published human-dog and cat-dog comparative maps, and with data from comparative gene mapping, increases the resolution of the current pig-human comparative map. It allows for the conserved syntenies detected in the pig, human, and cat to be aligned against the putative ancestral karyotype of eutherian mammals and for the history of karyotype evolution of the pig lineage to be reconstructed. Fifteen fusions, 17 fissions, and 23 inversions are required to convert the ancestral mammalian karyotype into the extant karyotype of the pig.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chromosome identification is an essential step in genomic research, which so far has not been possible in oysters. We tested bacteriophage P1 clones for chromosomal identification in the eastern oyster Crassostrea virginica, using fluorescence in situ hybridization (FISH). P1 clones were labeled with digoxigenin-11-dUTP using nick translation. Hybridization was detected with fluorescein-isothiocyanate-labeled anti-digoxigenin antibodies and amplified with 2 layers of antibodies. Nine of the 21 P1 clones tested produced clear and consistent FISH signals when Cot-1 DNA was used as a blocking agent against repetitive sequences. Karyotypic analysis and cohybridization positively assigned the 9 P1 clones to 7 chromosomes. The remaining 3 chromosomes can be separated by size and arm ratio. Five of the 9 P1 clones were sequenced at both ends, providing sequence-tagged sites that can be used to integrate linkage and cytogenetic maps. One sequence is part of the bone morphogenetic protein type 1b receptor, a member of the transforming growth factor superfamily, and mapped to the telomeric region of the long arm of chromosome 2. This study shows that large-insert clones such as P1 are useful as chromosome-specific FISH probes and for gene mapping in oysters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gloeobacter violaceus, a cyanobacterium lack of thylakoids, is refractory to genetic manipulations because its cells are enveloped by a thick gelatinous sheath and in colonial form. In this study, a large number of single cells were obtained by repeated pumping with a syringe with the gelatinous sheath removed. And an exogenous broad host range plasmid pKT210 was conjugatively transferred into G. violaceus. Analyses with dot-blot hybridization and restriction mapping showed that the exogenous plasmid pKT210 had been introduced into G. violaceus and stably maintained with no alteration in its structure. pKT210 extracted from G. violaceus exconjugants could be transformed into the mcr - mrr - E. coli strain DH10B but not the mcr(+) mrr(+) strain DH5alpha, which suggests that a methylase system may be present in G. violaceus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zhikong scallop Chlamys farreri(Jones et Preston) is an economically important species in China. Understanding its immune system would be of great help in controlling diseases. In the present study, an important immunity-related gene, the Lipopolysaccharide and Beta-1,3-glucan Binding Protein (LGBP) gene, was located on C. farreri chromosomes by mapping several lgbp-containing BAC clones through fluorescence in situ hybridization (FISH). Through the localization of various BAC clones, it was shown that only one locus of this gene existed in the genome of C. farreri, and that this was located on the long arm of a pair of homologous chromosomes. Molecular markers, consisting of eight single nucleotide polymorphism (SNPs) markers and one insertion-deletion (indel), were developed from the LGBP gene. Indel marker testing in an F1 family revealed slightly distorted segregation (p = 0.0472). These markers can be used to map the LGBP gene to the linkage map and assign the linkage group to the corresponding chromosome. Segregation distortion of the indel marker indicated genes with deleterious alleles might exist in the surrounding region of the LGBP gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Laminaria japonica Aresch breeding practice, two quantitative traits, frond length (FL) and frond width (FW), are the most important phenotypic selection index. In order to increase the breeding efficiency by integrating phenotypic selection and marker-assisted selection, the first set of QTL controlling the two traits were determined in F-2 family using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Two prominent L. japonicas inbred lines, one with "broad and thin blade" characteristics and another with "long and narrow blade" characteristics, were applied in the hybridization to yield the F-2 mapping population with 92 individuals. A total of 287 AFLP markers and 11 SSR markers were used to construct a L. japonica genetic map. The yielded map was consisted of 28 linkage groups (LG) named LG1 to LG28, spanning 1,811.1 cM with an average interval of 6.7 cM and covering the 82.8% of the estimated genome 2,186.7 cM. While three genome-wide significant QTL were detected on LG1 (two QTL) and LG4 for "FL," explaining in total 42.36% of the phenotypic variance, two QTL were identified on LG3 and LG5 for the trait "FW," accounting for the total of 36.39% of the phenotypic variance. The gene action of these QTL was additive and partially dominant. The yielded linkage map and the detected QTL can provide a tool for further genetic analysis of two traits and be potential for maker-assisted selection in L. japonica breeding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large number of polymorphic simple sequence repeats (SSRs) or microsatellites are needed to develop a genetic map for shrimp. However, developing an SSR map is very time-consuming, expensive, and most SSRs are not specifically linked to gene loci of immediate interest. We report here on our strategy to develop polymorphic markers using expressed sequence tags (ESTs) by designing primers flanking single or multiple SSRs with three or more repeats. A subtracted cDNA library was prepared using RNA from specific pathogen-free (SPF) Litopenaeus vannamei juveniles (similar to 1 g) collected before (0) and after (48 h) inoculation with the China isolate of white spot syndrome virus (WSSV). A total of 224 clones were sequenced, 194 of which were useful for homology comparisons against annotated genes in NCBI nonredundant (nr) and protein databases, providing 179 sequences encoded by nuclear DNA, 4 mitochondrial DNA, and 11 were similar to portions of WSSV genome. The nuclear sequences clustered in 43 groups, 11 of which were homologous to various ESTs of unknown function, 4 had no homology to any sequence, and 28 showed similarities to known genes of invertebrates and vertebrates, representatives of cellular metabolic processes such as calcium ion balance, cytoskeleton mRNAs, and protein synthesis. A few sequences were homologous to immune system-related (allergens) genes and two were similar to motifs of the sex-lethal gene of Drosophila. A large number of EST sequences were similar to domains of the EF-hand superfamily (Ca2+ binding motif and FRQ protein domain of myosin light chains). Single or multiple SSRs with three or more repeats were found in approximately 61 % of the 179 nuclear sequences. Primer sets were designed from 28 sequences representing 19 known or putative genes and tested for polymorphism (EST-SSR marker) in a small test panel containing 16 individuals. Ten (53%) of the 19 putative or unknown function genes were polymorphic, 4 monomorphic, and 3 either failed to satisfactorily amplify genomic DNA or the allele amplification conditions need to be further optimized. Five polymorphic ESTs were genotyped with the entire reference mapping family, two of them (actin, accession #CX535973 and shrimp allergen arginine kinase, accession #CX535999) did not amplify with all offspring of the IRMF panel suggesting presence of null alleles, and three of them amplified in most of the IRM F offspring and were used for linkage analysis. EF-hand motif of myosin light chain (accession #CX535935) was placed in ShrimpMap's linkage group 7, whereas ribosomal protein S5 (accession #CX535957) and troponin I (accession #CX535976) remained unassigned. Results indicate that (a) a large number of ESTs isolated from this cDNA library are similar to cytoskeleton mRNAs and may reflect a normal pathway of the cellular response after im infection with WSSV, and (b) primers flanking single or multiple SSRs with three or more repeats from shrimp ESTs could be an efficient approach to develop polymorphic markers useful for linkage mapping. Work is underway to map additional SSR-containing ESTs from this and other cDNA libraries as a plausible strategy to increase marker density in ShrimpMap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromosomal location of the 5S ribosomal RNA gene was studied in the eastern oyster, Crassostrea virginica Gmelin. using fluorescence in situ hybridization (FISH). Metaphase chromosomes were obtained from early embryos, and the FISH probe was made by PCR (polymerase chain reaction) amplification of the 5S rRNA gene and labeled by incorporation of digoxigenin-1 1-dUTP during PCR. Hybridization was detected with fluorescein-labeled antidigoxigenin antibodies. Two pairs of FISH signals were observed on metaphase chromosomes. Karyotypic analysis showed that the 5S rRNA gene cluster is interstitially located on short arms of chromosomes 5 and 6. On chromosome 5, the 5S rRNA genes were located immediately next to the centromere, whereas on chromosome 6, they were located approximately half way between the telomere and the centromere. Chromosomes of C. virginica are difficult to identify because of their similarities in size and arm ratio, and the chromosomal location of 5S rRNA genes provides unambiguous identification of chromosomes 5 and 6. Previous studies have mapped the major rRNA gene cluster (18S-5.8S-28S) to chromosome 2. and this study shows that the 5S rRNA gene cluster is not linked to the major rRNA genes and duplicated during evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amplified fragment length polymorphisms (AFLP) were used to study the inheritance of shell color in Argopecten irradians. Two scallops, one with orange and the other with white shells, were used as parents to produce four F-1 families by selfing and outcrossing. Eighty-eight progeny, 37 orange and 51 white, were randomly selected from one of the families for segregation and mapping analysis with AFLP and microsatellite markers. Twenty-five AFLP primer pairs were screened, yielding 1138 fragments, among which 148 (13.0%) were polymorphic in two parents and segregated in progeny. Six AFLP markers showed significant (P < 0.05) association with shell color. All six loci were mapped to one linkage group. One of the markers, F1f335, is completely linked to the gene for orange shell, which we designated as Orange1, without any recombination in the progeny we sampled. The marker was amplified in the orange parent and all orange progeny, but absent in the white parent and all the white progeny. The close linkage between F1f335 and Orange1 was validated using bulk segregation analysis in two natural populations, and all our data indicate that F1f335 is specific for the shell color gene, Orange1. The genomic mapping of a shell color gene in bay scallop improves our understanding of shell color inheritance and may contribute to the breeding of molluscs with desired shell colors.