61 resultados para Expectation Gap

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

III-V pentenary semiconductor AlGaInPAs with a direct band gap of up to 2.0 eV has been grown successfully on GaAs substrates by liquid phase epitaxy;(LPE). With the introduction of the energy bowing parameters of quaternaries, the theoretical calculations agree well with the measured PL peak energy data from pentenary samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since convective boiling or highly subcooled single-phase forced convection in micro-channels is an effective cooling mechanism with a wide range of applications, more experimental and theoretical studies are required to explain and verify the forced convection heat transfer phenomenon in narrow channels. In this experimental study, we model the convective boiling behavior of water with low latent heat substance Freon 113 (R-113), with the purpose of saving power consumption and visualizing experiments. Both heat transfer and pressure drop characteristics were measured in subcooled and saturated concentric narrow gap forced convection boiling. Data were obtained to qualitatively identify the effects of gap size, pressure, flow rate and wall superheat on boiling regimes and the transition between various regimes. Some significant differences from unconfined forced convection boiling were found,and also, the flow patterns in narrow vertical annulus tubes have been studied quantitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

煤部分气化技术作为一种新的煤气化技术已逐渐引起人们的重视,介绍了煤部分气体技术及其产物--半焦的研究现状和发展方向。随着半焦应用技术的不断完善,煤部分气化技术因具有低成本、高效率和低污染等优点,必将逐步取代传统的煤气化技术。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 coatings are prepared on fused silica with conventional electron beam evaporation deposition. After annealed at different temperatures for four hours, the spectra and XRD patterns of TiO2 thin film are obtained. XRD patterns reveal that only anatase phase can be observed in TiO2 coatings regardless of the different annealing temperatures, and with the increasing annealing temperature, the grain size gradually increases. The relationship between the energy gap and microstructure of anatase is determined and discussed. The quantum confinement effect is observed that with the increasing grain size of TiO2 thin film, the band gap energy shifts from 3.4 eV to 3.21 eV. Moreover, other possible influence of the TiO2 thin-film microstructure, such as surface roughness and thin film absorption, on band gap energy is also expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elastic constants, the bulk modulus, Young's modulus, band-gap bowing coefficients, spontaneous and piezoelectric polarizations, and piezoelectric coefficients of hexagonal AlxGa1-xN ternary alloys are calculated using first-principles methods. The fully relaxed structures and the structures subjected to homogeneous biaxial and uniaxial tension are investigated. We show that the biaxial tension in the plane perpendicular to the c axis and the uniaxial tension along the c axis all reduce the bulk modulus, whereas they reduce and enhance Young's modulus, respectively. We find that the biaxial and uniaxial tension can enhance the bowing coefficients. We also find that the biaxial tension can enhance the total polarization, while the uniaxial tension will suppress the total polarization. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new broadband filter, based on the high-order band gap in one-dimensional photonic crystal (PCs) of the form Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si, has been designed by the plane wave expansion method (PWEM) and transfer matrix method (TMM) and fabricated by lithography. The optical response of this filter to normal-incident and oblique-incident light proves that utilizing the high-order band gaps of PCs is an efficient method to lower the difficulties of fabricating PCs, increase the etching depth of semiconductor materials, and reduce the coupling loss at the interface between optical fibers and PC device. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter reports on the Raman, optical and magnetic properties of FeNi co-doped ZnO nanowires prepared via a soft chemical solution method. The microstructural investigations show that the NiFe co-dopants are substituted into wurtzite ZnO nanostructure without forming any secondary phase. The co-doped nanowires show a remarkable reduction of 34 nm (267.9 meV) in the optical band gap, while suppression in the deep-level defect transition in visible luminescence. Furthermore, these nanowires exhibit ferromagnetism and an interesting low-temperature spin glass behavior, which may arise due to the presence of disorder and strong interactions of frustrated spin moments of Ni and Fe co-dopants on the ZnO lattice sites. Copyright (C) EPLA, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density of states (DOS) above Fermi level of hydrogenated microcrystalline silicon (mu c-Si H) films is correlated to the material microstructure. We use Raman scattering and infrared absorption spectra to characterize the structure of the films made with different hydrogen dilution ratios. The DOS of the films is examined by modulated photocurrent measurement. The results have been accounted for in the framework of a three-phase model comprised of amorphous and crystalline components, with the grain boundary as the third phase. We observed that the DOS increases monotonically as the grain boundary volume fractions f(gb) is increased, which indicates a positive correlation between the DOS and the grain boundary volume fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To improve the photoelectrochemical activity of TiO2 for hydrogen production through water splitting, the band edges of TiO2 should be tailored to match with visible light absorption and the hydrogen or oxygen production levels. By analyzing the band structure of TiO2 and the chemical potentials of the dopants, we propose that the band edges of TiO2 can be modified by passivated codopants such as (Mo+C) to shift the valence band edge up significantly, while leaving the conduction band edge almost unchanged, thus satisfying the stringent requirements. The design principle for the band-edge modification should be applicable to other wide-band-gap semiconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p-d repulsion. The N-O acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alloy formation enthalpy and band structure of InGaN nanowires were studied by a combined approach of the valence-force field model, Monte Carlo simulation, and density-functional theory (DFT). For both random and ground-state structures of the coherent InGaN alloy, the nanowire configuration was found to be more favorable for the strain relaxation than the bulk alloy. We proposed an analytical formula for computing the band gap of any InGaN nanowires based on the results from the screened exchange hybrid DFT calculations, which in turn reveals a better band-gap tunability in ternary InGaN nanowires than the bulk alloy.