2 resultados para Desensitization

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many ionotropic receptors are modulated by extracellular H+. So far, few studies have directly addressed the role of such modulation at synapses. In the present study, we investigated the effects of changes in extracellular pH on glycinergic miniature inhibitory postsynaptic currents (mIPSCs) as well as glycine-evoked currents (I-Gly) in mechanically dissociated spinal neurons with native synaptic boutons preserved. H+ modulated both the mIPSCs and I-Gly, biphasically, although it activated an amiloride-sensitive inward current by itself. Decreasing extracellular pH reversibly inhibited the amplitude of the mIPSCs and I-Gly, while increasing external pH reversibly potentiated these parameters. Blockade of acid-sensing ion channels (ASICs) with amiloride, the selective antagonist of ASICs, or decreasing intracellular pH did not alter the modulatory effect of H+ on either mIPSCs or I-Gly, H+ shifted the EC50 of the glycine concentration-response curve from 49.3 +/- 5.7 muM at external pH 7.4 to 131.5 +/- 8.1 muM at pH 5.5, without altering the Cl- selectivity of the glycine receptor (GlyR), the Hill coefficient and the maximal I-Gly, suggesting a competitive inhibition of I-Gly by H+. Both Zn2+ and H+ inhibited I-Gly. However, H+ induced no further inhibition of I-Gly in the presence of a saturating concentration of Zn2+. In addition, H+ significantly affected the kinetics of glycinergic mIPSCs and I-Gly. It is proposed that H+ and/or Zn2+ compete with glycine binding and inhibit the amplitude of glycinergic mIPSCs and I-Gly. Moreover, binding of H+ induces a global conformational change in GlyR, which closes the GlyR Cl- channel and results in the acceleration of the seeming desensitization of IGly as well as speeding up the decay time constant of glycinergic mIPSCs. However, the deprotonation rate is faster than the unbinding rate of glycine from the GlyR, leading to reactivation of the undesensitized GlyR after washout of agonist and the appearance of a rebound I-Gly. H+ also modulated the glycine cotransmitter, GABA-activated current (I-GABA). Taken together, the results support a 'conformational coupling' model for H+ modulation of the GlyR and suggest that W may act as a novel modulator for inhibitory neurotransmission in the mammalian spinal cord.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The responses to rapid application of gamma-aminobutyric acid (GABA) and the GABA receptor characteristics of MTXO neurosecretory cells in the eyestalks of Chinese mitten-handed crab (Eriocheir sinensis) were examined by whole-cell patch clamp. Under current clamp mode, the depolarization and hyperpolarization were evoked from the three types of neurosecretory cells in response to the GABA (0.1 mmol/L) depending on the Nernst Cl- potential. Under voltage clamp mode, the inward Cl- channel currents (I-GABA) were resolved from all three types of neurosecretory cells in response to GABA (0.01similar to5 mmol/L). The GABA currents were activated within 1 200 ms and peaked within 800 ms. No obviously desensitization was observed during GABA application. The dose-response curve showed usual S-shape, with a just-discernible effect at 0.01 mmol/L and near-saturation at 0.5 mmol/L. The GABA currents had reversal potentials that followed Nernst Cl- potentials when [Cl-] was varied. The pharmacological results revealed that the GABA receptor of the crab neurosecretory cells was sensitive to the Cl- channel blockers picrotoxin and niflumic acid (0.5 mmol/L), insensitive to GABA(A) receptor antagonist bicuculline and GABA(C) receptor agonist cis-4-aminocrotonic acid (CACA 1 mmol/L) and trans-4-aminocrotonic (TACA 1 mmol/L).