16 resultados para Biodiversity

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Central Yangtze ecoregion in China includes a number of lakes, but these have been greatly affected by human activities over the past several decades, resulting in severe loss of biodiversity. In this paper, we document the present distribution of the major lakes and the changes in size that have taken place over the past 50 years, using remote sensing data and historical observations of land cover in the region. We also provide an overview of the changes in species richness, community composition, population size and age structure, and individual body size of aquatic plants, fishes, and waterfowl in these lakes. The overall species richness of aquatic plants found in eight major lakes has decreased substantially during the study period. Community composition has also been greatly altered, as have population size and age and individual body size in some species. These changes are largely attributed to the integrated effects of lake degradation, the construction of large hydroelectric dams, the establishment of nature reserves, and lake restoration practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparative studies on community structure and biodiversity of macrozoobenthos were carried out in three lake areas with different states of eutrophication (mesotrophic, eutrophic and hypereutrophic) in a shallow subtropic lake (Lake Donghu) in the middle basin of the Yangtze River of China. Thirty-three taxa (including six Mollusca, five Oligochaeta, 15 Chironomidae and seven other zoobenthos) were found during February 1998 to April 1999. The results show that the more eutrophic the lake water, the lower the macrozoobenthos species diversity (measured as species number, diversity index, and K-dominant curves). Abundance of the oligochaete Limnodrilus hoffmeisteri was positively correlated with the degree of eutrophication, which was due mainly to its ability to tolerate low dissolved oxygen. The chironomid Tanypus chinensis also thrived in the hypereutrophic environment; however, it was less endurable to eutrophication than L. hoffmeisteri.