135 resultados para immune barrier
Resumo:
The kinetic analysis of the interaction between tumor necrosis factor(TNF) and its monoclonal antibody was performed by surface plasmon resonance(SPR) technique. The monoclonal antibody was immobilized to the surface of CM5 sensor chip by amine coupling. TNF at different concentrations was injected across the mAb immobilized surface. The interaction was recorded in real time and could be seen on the sensorgram. One cycle, including association, dissociation and regeneration, lasted no more than 15 min. The interaction results was evaluated using 1 : 1 Langmuir binding model. The kinetic rate constants were calculated to be: k =1.68 X 10(3) L (.) mol(-1) (.) s(-1), k(d) = 1.73 X 10(-4) s(-1), and the affinity constants K-A = 9. 7 X 10(3) L (.) mol(-1), K-r)= 1. 03 X 10(-7) Mol (.) L-1. The X-2 was 3.47, which showed that the interaction is consistent with the 1 : I model. We can see from the results that although there are two binding sites in one mAb molecule, TNF reacts with each site in an independent and noncooperative manner.
Resumo:
A series of vinylidene dichloride (VDC) copolymers with methyl acrylate (MA) as comonomer (3-12wt%), was prepared by free-radical suspension copolymerization. The permeability coefficients of the copolymers to oxygen and carbon dioxide were measured at 1.0 MPa and at 30 degrees C, and those to water vapor were measured at 30 degrees C and 100% relative humidity. All the VDC/MA copolymers studied are semicrystalline. As the MA content increases, the permeability coefficients of the copolymers to oxygen, carbon dioxide, and water vapor are progressively increased, caused by decrease in crystalline fraction and increase in free volume of VDC/MA copolymers.
Resumo:
A series of acrylonitrile (AN) copolymers with methyl acrylate (MA) or ethyl acrylate (EA) as comonomer (5-23 wt%) was prepared by free-radical copolymerisation. The permeability coefficients of the copolymers to oxygen and carbon dioxide were measured at 1.0 MPa and at 30 degrees C, and those to water vapor also measured at 100% relative humidity and at 30 degrees C. All the AN/acrylic copolymers are semicrystalline. As the acrylate content increase, the permeability coefficients of the copolymers to oxygen and carbon dioxide are increased progressively, but those to water vapor are decreased progressively. The gas permeability coefficients of the polymers were correlated with free-volume fractions or the ratio of free volume to cohesive energy.
Resumo:
A novel idea relating to the selective barrier layer of a composite membrane is described. The effective interface of the composite membrane could act as a barrier layer which could be controlled to an ideally ultrathin thickness. A new type of polyamide composite membrane was prepared according to this idea, which possessed permeability and chemical resistance more than one magnitude greater than those of ordinary polyamide composite membranes. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The permeability coefficients of a series of copolymers of vinylidene chloride (VDC) with methyl acrylate (MA), butyl acrylate (BA) or vinyl chloride (VC) (as comonomer) to oxygen and carbon dioxide have been measured at 1.0 MPa and 30 degrees C, while those to water vapor have been measured at 30 degrees C and 100% relative humidity. All the copolymers are semicrystalline. VDC/MA copolymers have lower melting temperature compared with VDC/BA copolymers, while that melting temperature of VDC/VC copolymer is higher than that of VDC/acrylate copolymers with the same VDC content. The barrier property of the copolymers is predominantly controlled by crystallite, free volume fraction, and cohesive energy. The permeability coefficients of VDC/MA copolymers to oxygen, carbon dioxide, and water vapor were successfully correlated with the ratio of free volume to cohesive energy.
Resumo:
CpG oligodeoxynucleotides (ODNs) can stimulate the immune system, and therefore are widely used as a therapeutic vaccination and immune adjuvant in human. In the present study, CpG-C, a combination of A- and B-class ODN, was injected into Chinese mitten crab Eriocheir sinensis at three doses (0.1, 1 and 10 mu g crab-1), and the reactive oxygen species (ROS) levels, activities of total intracellular phenoloxidase (PO) and lysozyme-like activities, the mRNA transcripts of EsproPO, EsCrustin and EsALF were assayed to evaluate its modulating effects on the immune system of crab. The ROS levels in all treated and control groups were significantly increased from 6 to 24 h, except that ROS in 0.1 mu g CpG-C-treated crabs was comparable to that of the blank at 6 h. The PO activity was significantly enhanced and EsproPO transcripts were down-regulated (P < 0.01) at 6 h after the injection of 0.1 mu g CpG-C, with no significant changes in the other dosage treatments. The lysozyme-like activities and EsCrustin transcripts in the CpG-C-treatment groups were significantly higher than those of controls. The mRNA expression of EsALF remained almost constant in all the groups during the treatment. These results collectively suggested that CpG-C could activate the immune responses of E. sinensis, and might be used as a novel immunostimulant for disease control in crabs.
Resumo:
CpG oligodeoxynucleotides (ODNs) can stimulate the immune system, and therefore are widely used as a therapeutic vaccination and immune adjuvant in human. In the present study, CpG-C, a combination of A- and B-class ODN, was injected into Chinese mitten crab Eriocheir sinensis at three doses (0.1, 1 and 10 mu g crab-1), and the reactive oxygen species (ROS) levels, activities of total intracellular phenoloxidase (PO) and lysozyme-like activities, the mRNA transcripts of EsproPO, EsCrustin and EsALF were assayed to evaluate its modulating effects on the immune system of crab. The ROS levels in all treated and control groups were significantly increased from 6 to 24 h, except that ROS in 0.1 mu g CpG-C-treated crabs was comparable to that of the blank at 6 h. The PO activity was significantly enhanced and EsproPO transcripts were down-regulated (P < 0.01) at 6 h after the injection of 0.1 mu g CpG-C, with no significant changes in the other dosage treatments. The lysozyme-like activities and EsCrustin transcripts in the CpG-C-treatment groups were significantly higher than those of controls. The mRNA expression of EsALF remained almost constant in all the groups during the treatment. These results collectively suggested that CpG-C could activate the immune responses of E. sinensis, and might be used as a novel immunostimulant for disease control in crabs.
Resumo:
Double-stranded RNA (dsRNA) is a virus-associated molecular pattern which induces antiviral innate immune responses and RNA interference (RNAi) in mammals. In invertebrates, RNAi phenomenon has been widely studied, but dsRNA-induced innate immune response is seldom reported. In the present study, two different dsRNAs specific for green fluorescent protein (GFP) and the putative D1 protein of photosystem II (NoPSD) from Nannochloropsis oculata, were employed to challenge Chinese mitten crab Eriocheir sinensis. The temporal changes of phenoloxidase (PO), acid phosphatase (ACP), superoxide dismutase (SOD) and malondialdehyde (MDA) content, as well as the mRNA expression of some immune-related genes were examined in order to estimate the effect of dsRNAs on the innate immunity of E. sinensis. The activities of PO, ACP and SOD significantly increased after dsRNA treatment, whereas malondialdehyde (MDA) content did not change significantly. Among the examined genes, only the mRNA expression of EsALF, an antibacterial peptide in E. sinensis, was significantly up-regulated (about 5 fold, P < 0.05) at 12 h after dsRNA treatment, while no significant expression changes were observed among the other immune genes. The increase of PO, ACP and SOD activities, and mRNA expression level of EsALF after dsRNA stimulation indicate that phenoloxidase, hydrolytic enzyme, antioxidation and EsALF were involved in dsRNA-induced innate immunity, suggesting that broad-spectrum immune responses could be induced by dsRNA in E. sinensis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Chinese mitten crab Eriocheir sinensis is one of the most important aquaculture crustacean species in China. A cDNA library was constructed from hemocytes of E. sinensis challenged with the mixture of Listonella anguillarum and Staphylococcus aureus, and randomly sequenced to collect genomic information and identify genes involved in immune defense response. Single-pass 5' sequencing of 10368 clones yielded 7535 high quality ESTs (Expressed Sequence Tags) and these ESTs were assembled into 2943 unigenes. BLAST analysis revealed that 1706 unigenes (58.0% of the total) or 4593 ESTs (61.0% of the total) were novel genes that had no significant matches to any protein sequences in the public databases. The rest 1237 unigenes; (42.0% of the total) were closely matched to the known genes or sequences deposited in public databases, which could be classed into 20 or 23 classifications according to "molecular function" or "biological process" respectively based on the Gene Ontology (GO). And 221 unigenes (7.5% of all 2943 unigenes, 17.9% of matched unigenes) or 969 ESTs (12.9% of all 7535 ESTs, 32.9% of matched ESTs) were identified to be immune genes. The relative higher proportion of immune-related genes in the present cDNA library than that in the normal library of E. sinensis and other crustaceans libraries, and the differences and changes in percentage and quantity of some key immune-related genes especially the immune inducible genes between two E. sinensis cDNA libraries may derive from the bacteria challenge to the Chinese mitten crab. The results provided a well-characterized EST resource for the genomics community, gene discovery especially for the identification of host-defense genes and pathways in crabs as well as other crustaceans. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles in the innate immunity. In this study, a novel multidomain C-type lectin gene from scallop Chlamys farreri (designated as Cflec-4) was cloned by RACE approach based on EST analysis. The full-length cDNA of Cflec-4 was of 2086 bp. The open reading frame was of 1830 bp and encoded a polypeptide of 609 amino acids, including a signal sequence and four dissimilar carbohydrate-recognition domains (CRDs). The deduced amino acid sequence of CflecA shared high similarities to other C-type lectin family members. The phylogenetic analysis revealed the divergence between the three N-terminal CRDs and the C-terminal one, suggesting that the four CRDs in Cflec-4 originated by repeated duplication of different primordial CRD. The potential tertiary structure of each CRD in Cflec-4 was typical double-loop structure with Ca2+-binding site 2 in the long loop region and two conserved disulfide bridges at the bases of the loops. The tissue distribution of Cflec-4 mRNA was examined by fluorescent quantitative real-time PCR. In the healthy scallops, the Cflec-4 transcripts could be only detected in gonad and hepatopancreas, whereas in the Listonella anguillarum challenged scallops, it could be also detected in hemocytes. These results collectively suggested that CflecA was involved in the immune defense of scallop against pathogen infection and provided new insight into the evolution of C-type lectin superfamily. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
MEP is a member of thioester-containing protein (TEP) family found in Zhikong scallop Chlamys farreri and is involved in innate immunity against invading microbes. In the present study, the genomic DNA of CfTEP was cloned and characterized. The genomic DNA sequence of CfTEP consisted of 40 exons and 39 introns spanning 35 kb with all exon-intron junction sequences agreeing with the GT/AG consensus. The genomic organization of CfTEP was similar to human and mouse 0 rather than ciona C3-1 and Drosophila dTEP2. By RT-PCR technique, seven different cDNA variants of CfTEP (designated as CfTEP-A-CfTEP-G) were cloned from scallop gonad. CfTEP-A-CfTEP-F were produced by alternative splicing of six mutually exclusive exons (exons 19-24), respectively, which encoded the highly variable central region. While in CfTEP-G, the deletion of all the six exons introduced a new translation stop site and might trigger nonsense mediated decay (NMD). The mRNA expression and the proportion of the seven CfTEP variant transcripts were examined in the gonad of scallops after bacterial challenge. The fragments containing the highly variable central region of UTEP were amplified by RT-PCR and a 100 positive clones were sequenced randomly. The expression profiles of the seven MEP variants were different and displayed the sex and bacteria dependent manner. In the blank, sea water and Listonella anguillarum challenged subgroups of male scallops, all the transcripts detected were CfTEP-G isoform. In the Micrococcus luteus challenged subgroup, the isoforms expressed and their proportions were CfTEP-F (54%), CfTEP-B (23%), CfTEP-A (10%), CfTEP-C (7%) and CfTEP-E (6%). However, in the gonad of female scallops, only CfTEP-A were found in blank and sea water challenged subgroups. After L anguillarum or M. luteus challenge, four and five isoforms were detected, respectively, with CfTEP-F isoform being the most one in the both subgroups. These results suggested that the evolution of TEP genes was very complex, and that the diverse CfTEP transcripts generated by alternative splicing played an important role as pattern recognition receptors in the innate immune defense of scallops. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A total of 10446 expressed sequence tags (ESTs) are obtained by a large-scale sequencing of a cDNA library from cephalothorax of adult Fenneropenaeus chinensis. An EST analysis platform was built up based on local computers and bioinformatic techniques were used to annotate these ESTs in order to promptly find possible functional genes, especially for immune related factors. About 4% of the ESTs show similarity to the coding sequences of such factors, including lectin, serine protease, serpin, lysozyme, etc. These ESTs provide a partial profile of the immune system in F. chinensis and useful information for further study on these genes.
Resumo:
It is well known that invertebrates are devoid of adaptive immune components and rely primarily on innate immunity to defend against pathogens, but recent studies have demonstrated the existence of enhanced secondary immune protection in some invertebrates. in the present study, the cumulative mortality of scallops received two successive Listonella anguillarum stimulations was recorded, and variations of immune parameters including phagocytosis (phagocytic rate and phagocytic index), phenoloxidase-like enzyme, acid phosphatase and superoxide dismutase activities were also examined. The scallops received a previous short-term L anguillarum stimulation were protected against a long-term stimulation of L. anguillarum. Significantly higher level of phagocytic activities and acid phosphatase activity were observed in the scallops received twice stimulations compared with those only received the secondary stimulation. These results indicated that a short-term immersion with L. anguillarum modulated the scallops' immune system and endowed the scallops with enhanced resistance to the secondary bacterial stimulation: phagocytosis and acid phosphatase were suspected to be involved in the protection. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.
Resumo:
C-type lectins are Ca2+-dependent carbohydrate-recognition proteins that play crucial roles in innate immunity. The cDNA of C-type lectin (AiCTL1) in the bay scallop Argopecten irradians was cloned by expressed sequence tag (EST) and RACE techniques. The full-length cDNA of AiCTL1 was 660 bp, consisting of a T-terminal. untranslated region (UTR) of 30 bp and a 3' UTR of 132 bp with a polyadenylation signal sequence AATAAA and a poly(A) tail. The AiCTL1 cDNA encoded a polypeptide of 166 amino acids with a putative signal peptide of 20 amino acid residues and a mature protein of 146 amino acids. The deduced amino acid sequence of AiCTL1 was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 121 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. AiCTL1 mRNA was dominantly expressed in the hemocytes of the bay scallop. The temporal expression of AiCTL1 mRNA in hemocytes was increased by 5.7-and 4.9-fold at 6 h after injury and 8 h after injection of bacteria, respectively. The structural features, high similarity and expression pattern of AiCTL1 indicate that the gene may be involved in injury heating and the immune response in A. irradians. (c) 2008 Elsevier Ltd. All rights reserved.