222 resultados para drug absorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear and circular photogalvanic effects have been observed in undoped InN films for the interband transition by irradiation of 1060 nm laser at room temperature. The spin polarized photocurrent depends on the degree of polarization, and changes its sip when the radiation helicity changes from left-handed to right-handed. This result indicates the sizeable spin-orbit interaction in the InN epitaxial layer and provides an effective method to generate spin polarized photocurrent and to detect spin-splitting effect in semiconductors with promising applications on spintronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelength tunable electro-absorption modulated distributed Bragg reflector lasers (TEMLs) are promising light source in dense wavelength division multiplexing (DWDM) optical fiber communication system due to high modulation speed, small chirp, low drive voltage, compactness and fast wavelength tuning ability. Thus, increased the transmission capacity, the functionality and the flexibility are provided. Materials with bandgap difference as large as 250nm have been integrated on the same wafer by a combined technique of selective area growth (SAG) and quantum well intermixing (QWI), which supplies a flexible and controllable platform for the need of photonic integrated circuits (PIC). A TEML has been fabricated by this technique for the first time. The component has superior characteristics as following: threshold current of 37mA, output power of 3.5mW at 100mA injection and 0V modulator bias voltage, extinction ratio of more than 20 dB with modulator reverse voltage from 0V to 2V when coupled into a single mode fiber, and wavelength tuning range of 4.4nm covering 6 100-GHz WDM channels. A clearly open eye diagram is observed when the integrated EAM is driven with a 10-Gb/s electrical NRZ signal. A good transmission characteristic is exhibited with power penalties less than 2.2 dB at a bit error ratio (BER) of 10(-10) after 44.4 km standard fiber transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High performance InGaAsP/InGaAsP strained compensated multiple-quantum-well (MQW) electroabsorption modulators (EAM) monolithically integrated with a DFB laser diode have been designed and realized by ultra low metal-organic vapor phase epitaxy (MOVPE) based on a novel butt joint scheme. The optimization thickness of upper SCH layer for DFB and EAM was obtained of the proposed MQW structure of the EAM through numerical simulation and experiment. The device containing 250(mu m) DFB and 170(mu m) EAM shows good material quality and exhibits a threshold current of 17mA, an extinction ratio of higher than 30 dB and a very high modulation efficiency (12dB/V) from 0V to 1V. By adopting a high-mesa ridge waveguide and buried polyimide, the capacitance of the modulator is reduced to about 0.30 pF corresponding to a 3dB bandwidth more than 20GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applying the model dielectric function method, we have expressed the absorption coefficient of GaSb analytically at room temperature relating to the contribution of various critical points of its electronic band structure. The calculated absorption spectrum shows good agreement with the reported experimental data obtained by spectral ellipsometry on nominally undoped sample. Based on this analytical absorption spectrum, we have qualitatively evaluated the response of active absorbing layer structure and its photoelectric conversion properties of GaSb thermophotovoltaic device on the perturbation of external thermal radiation induced by the varying radiator temperature or emissivity. Our calculation has demonstrated that desirable thickness to achieve the maximum conversion efficiency should be decreased with the increment of radiator temperature and the performance degradation brought by any structure deviation from its optimal one would be stronger meanwhile. For the popular radiator temperature, no more than 1500 K in a real solar thermophotovoltaic system, and typical doping profile in GaSb cell, a reasonable absorbing layer structure parameter should be controlled within 100-300 nm for the emitter while 3000-5000 nm for the base.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiant heat conversion performance dominated by the active layer of Ga0.84In0.16As0.14Sb0.86 diode has been systematically investigated based on an analytic absorption spectrum, which is suggested here by numerically fitting the limited experimental data. For the concerned diode configuration, our calculation demonstrates that the optimal base doping is 3-4 x 10(17) cm(-3), which is less sensitive to the variation of the external radiation spectrum. Given the scarcity of the alloy elements, an economical device configuration of the 0.2-0.6 mu m emitter and the 4-6 mu m base would be particularly acceptable because the corresponding conversion efficiency cannot exhibit discouraging degradation in comparison to the one for the optimal structure, the thickness of which may be up to 10 mu m. More importantly, the method we suggested here to calculate alloy absorption can be easily transferred to other composition, thus bringing great convenience for design or optimization of the optoelectronic device formed by these alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetoexcitonic optical absorption of a GaAs bulk semiconductor driven by a terahertz (THz) field is investigated numerically. The method of the solution of the initial-value problem, in combination with the perfect matched layer technique, is used to calculate the optical susceptibility, with Coulomb interaction, Landau quantization, and THz fields involved nonperturbatively. It shows that there appear replicas and sidebands of magnetoexciton of different Landau levels, which greatly enrich the magneto-optical spectrum in the presence of a driving THz field. Copyright (C) EPLA, 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excitonic optical absorption of GaAs bulk semiconductors under intense terahertz (THz) radiation is investigated numerically. The method of solving initial-value problems, combined with the perfect matched layer technique, is used to calculate the optical susceptibility. In the presence of a driving THz field, in addition to the usual exciton peaks, 2p replica of the dark 2p exciton and even-THz-photon-sidebands of the main exciton resonance emerge in the continuum above the band edge and below the main exciton resonance. Moreover, to understand the shift of the position of the main exciton peak under intense THz radiation, it is necessary to take into consideration both the dynamical Franz-Keldysh effect and ac Stark effect simultaneously. For moderate frequency fields, the main exciton peak decreases and broadens due to the field-induced ionization of the excitons with THz field increasing. However, for high frequency THz fields, the characteristics of the exciton recur even under very strong THz fields, which accords with the recent experimental results qualitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear optical absorption in a three-subband step asymmetric semiconductor quantum well driven by a strong terahertz (THz) field is investigated theoretically by employing the intersubband semiconductor-Bloch equations. We show that the optical absorption spectrum strongly depends on the intensity, frequency, and phase of the pump THz wave. The strong THz field induces THz sidebands and Autler-Townes splitting in the probe absorption spectrum. Varying the pump frequency can bring not only the new absorption peaks but also the changing of the energy separation of the two higher-energy levels. The dependence of the absorption spectrum on the phase of the pump THz wave is also very remarkable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fulgides are one kind of organic photochromic compound, which are famous for their thermal irreversibility. In this report, from the difference spectra of the absorption A() of one kind of pyrrylfulgide, the spectral refractive index change n() was calculated by the Kramers-Kronig relation (KKR), and a good correlation of theoretically derived values and the experimental values of the n measured by a modified Michelson interferometer was found. Further, it is demonstrated that it was possible to calculate the spectral dependence of diffraction efficiency from the easily accessible absorption changes. This method will be a useful tool for the characterization and optimization of fulgide films. The results show that the diffraction efficiency is high at 488 and 750 nm, where the absorption is very small, so we can realize non-destructive reconstruction.