135 resultados para immune barrier
Resumo:
By integrating a three-barrier, two-well resonant tunneling structure with a 1.2-mu m-thick, slightly doped n-GaAs layer, a photoinduced voltage shift on the order of magnitude of 100 mV in resonant current peaks has been verified at an irradiance of low light power density. The 1.2-mu m-thick, slightly doped n-GaAs layer manifests itself of playing an important role in enhancing photoelectric sensitivity. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have calculated the photoelectric response in a specially designed double barrier structure. It has been verilied that a transfer of the internal photovoltaic effect in the quantum well to the tunnelling transport through above-barrier quasibound states of the emitter barrier may give rise to a remarkable photocurrent.
Resumo:
Using the measured capacitance- voltage curves of Ni Schottky contacts with different areas on strained AlGaN/ GaN heterostructures and the current- voltage characteristics for the AlGaN/ GaN heterostructure field- effect transistors at low drain- source voltage, we found that the two- dimensional electron gas (2DEG) electron mobility increased as the Ni Schottky contact area increased. When the gate bias increased from negative to positive, the 2DEG electron mobility for the samples increased monotonically except for the sample with the largest Ni Schottky contact area. A new scattering mechanism is proposed, which is based on the polarization Coulomb field scattering related to the strain variation of the AlGaN barrier layer. (C) 2007 American Institute of Physics.
Resumo:
The dynamics of spin-dependent tunneling through a nonmagnetic semiconductor double-barrier structure is studied including the k(3) Dresselhaus spin orbit coupling is solved by the time-dependent Schrodinger equation with a developed method for the finite-difference relaxation. The resonant peak and quasibound level lifetime are determined by the in-plane wave vector and the applied electric field. The buildup time and decay lifetime of resonant probability amplitude are different for the spin-down and spin-up electrons due to the Dresselhaus spin-orbit coupling. Further investigation shows that the steady spin-polarization in both the well and collector regions has been obtained in the time domain. (C) 2007 American Institute of Physics.
Resumo:
A new GaN-based ultraviolet photodetector with Schottky barrior structure is proposed. Comparied with the conventional i-GaN/n(+) -GaN structure, there is an additional thin n-AlGaN cap layer on the i-GaN in the new structure. The simulation result demonstrates that the new structure leads to an increased quantum efficiency in GaN photodetection, since the negative effect of surface states on the photodetector is reduced in the new structure. In addition, it is suggested that the performance of device with the new structure could be further improved by employing an even thinner AlGaN cap layer with higher carrier concentration.
Resumo:
The modulation of superlattice band structure via periodic delta-doping in both well and barrier layers have been theoretically investigated, and the importance of interaction between the delta-function potentials in the well layers and those in the barrier layers on SL band structure have been revealed. It is pointed out that the energy dispersion relation Eq. (3) given in [G. Ihm, S.K. Noh, J.I. Lee, J.-S. Hwang, T.W. Kim, Phys. Rev. B 44 (1991) 6266] is an incomplete one, as the interaction between periodic delta-doping in both well and barrier layers had been overlooked. Finally, we have shown numerically that the electron states of a GaAs/Ga0.7Al0.3As superlattice can be altered more efficiently by intelligent tuning the two delta-doping's positions and heights. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A new AlGaN/AlN/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded AlGaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high Al composition AlGaN barrier. The high 2DEG mobility of 1806 cm(2)/Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5 mu m x 5 mu m are attributed to the improvement of interfacial and crystal quality by employing the step-graded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5 Omega/square, with a good resistance uniformity of 0.68%, is also obtained across the 50 mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/mm and a maximum drain current density of 800 mA/mm.
Resumo:
We propose a new structure of GaN based Schottky barrier ultraviolet photodetector, in which a thin n-type AlGaN window layer is added on the conventional n(-)-GaN/n(+)-GaN device structure. The performance of the Schottky barrier ultraviolet photodetector is found to be improved by the new structure. The simulation result shows that the new structure can reduce the negative effect of surface states on the performance of Schottky barrier GaN photodetectors, improving the quantum efficiency and decreasing the dark current. The investigations suggest that the new photodetector can exhibit a better responsivity by choosing a suitably high carrier concentration and thin thickness for the AlGaN window layer.
Resumo:
By integrating a resonant tunneling diode with a 1.2 mu m-thick slightly doped n-type GaAs layer in a three-barrier, two-well resonant tunneling structure, the resonant tunneling of photo-excited holes exhibits a value of peak-to-valley current ratio (PVCR) as high as 36. A vast number of photo-excited holes generated in this 1.2 mu m-thick slightly doped n-type GaAs layer, and the quantization of hole levels in a 23nm-thick quantum well on the outgoing side of hole tunneling out off the resonant tunneling diode which greatly depressed the valley current of the holes, are thought to be responsible for such greatly enhanced PVCR.
Resumo:
The influence of defects on the responsivity of GaN Schottky barrier ultraviolet photodetectors with n(-)-GaN/n(+)-GaN layer structures is investigated. It is found that employing undoped GaN instead of Si-doped GaN as the n(-)-GaN layer brings about a higher responsivity due to a lower Ga vacancy concentration. On the other hand, the dislocations may increase the recombination of electron-hole pairs and enhance the surface recombination in the photodetectors. Employing undoped GaN and reducing the dislocation density in the n(-)-GaN layer are necessary to improve the responsivity of Schottky barrier photodetectors. (c) 2007 American Institute of Physics.
Resumo:
Low indium content InGaN/AlGaN multiple quantum wells (MQWs) have been grown on Si(111) substrate by metal-organic chemical vapour deposition (MOCVD). A new method of using an isoelectronic indium-doped AlGaN barrier has been found to be very effective in improving the crystalline quality and interfacial abruptness of InGaN quantum well layers. We grew five periods of In0.06Ga0.94N/Al0.20Ga0.80N:In MQWs with In-doped barrier layers and obtained strong near-ultraviolet (UV) emission (similar to 400 nm) at room temperature. An In-doped AlGaN barrier improves the room-temperature PL intensity of InGaN/AlGaN MQWs, making it a candidate barrier for a near-UV source on Si substrate.
Resumo:
Background: Subretinal microphotodiode array (MPDA) is a type of visual prosthesis used for the implantation in the subretinal space of patients with progressive photoreceptor cell loss. The present study aimed to evaluate the effect of materials for MPDA on the viability, apoptosis and barrier function of cultured pig retinal pigment epithelium (RPE) cells.Methods: Primary culture of pig RPE cells was performed and 24 pig eyes were used to start RPE culture. The third passage of the cultures was plated on different materials for MPDA and MPDAs. The tetrazolium dye-reduction assay (MTT) was used to determine RPE cell viability. Flow cytometry was measured to indicate the apoptosis rates of RPE cells on different materials. RPE cells were also cultured on microporous filters, and the transepithelial resistance and permeability of the experimental molecule were measured to determine the barrier function.Results: The data from all the methods indicated no significant difference between the materials groups and the control group, and the materials tested showed good biocompatibility.Conclusions: The materials for MPDA used in the present study had no direct toxicity to the RPE cells and did not release harmful soluble factors that affected the barrier function of RPE in vitro.
Resumo:
We report the photocurrent response in a double barrier structure with quantum dots-quantum well inserted in central well. When this quantum dots-quantum well hybrid heterostructure is biased beyond + 1 or -I V, the photocurrent response manifests itself as a steplike enhancement, increasing linearly with the light intensity. Most probably, at proper bias condition, the pulling down of the X minimum of GaAs at the outgoing interface of the emitter barrier by the photovoltaic effect in GaAs QW will initiate the r,-X-X tunneling at much lower bias as compared with that in the dark. That gives rise to the observed photocurrent response. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) made with a semimagnetic semiconductor is studied theoretically. The calculated spin-polarized current and polarization degree are in agreement with recent experimental results. It is predicted that the polarization degree can be modulated continuously from + 1 to - 1 by changing the external voltage such that the quasi-confined spin-up and spin-down energy levels shift downwards from the Fermi level to the bottom of the conduction band. The RTD with low potential barrier or the tunneling through the second quasi-confined state produces larger spin-polarized current. Furthermore a higher magnetic field enhances the polarization degree of the tunneling current. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
When injected electrons in a quantum well first experience an intersubband relaxation process before their escaping by tunneling through a double-barrier structure behind, the magnetic suppression of intersubband LO or LA phonon scattering can give rise to a noticeable nonthermal occupation in higher-lying subbands. That is clearly verified by the relative intensity ratio of the interband photoluminescence spectra for E-2-HH1 and E-1-HH1 transitions. The observed phenomenon may provide an effective method for controlling intersubband scattering rate, a central issue in so-called quantum cascade lasers, and facilitating the population inversion between subbands in quantum wells.