47 resultados para Variant hemoglobin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrodeposition of the phenothiazine mediator titrant toluidine blue onto a glassy carbon substrate at an appropriate potential was used to construct a toluidine blue chemically modified electrode (CME) exhibiting electrocatalytic reduction for myoglobin and hemoglobin. The CME catalyzed the hemoprotein electroreduction at the reduction potential of the mediator molecule. When the CME as used as a detector for flow injection analysis at a constant applied potential of -0.30 V vs. a saturated calomel electrode, it gave detection limits of 20 and 50 ng (1.2 and 0.78 pmol) injected myoglobin and hemoglobin, respectively, with a dynamic linear concentration range over 2 orders of magnitude. After a brief equilibration period, the CME retained nearly 90% of its initial myoglobin response over 8 hours of continuous exposure to the flow-through system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molluscan shells may display a variety of colors, which formation, inheritance, and evolutionary significance are not Well understood. Here we report a new variant of the Pacific abalone Haliotis discus hannai that displays a novel orange shell coloration (O-type) that is clearly distinguishable from the Wild green-shelled abalone (G-type). Controlled mating experiments between O- and G-type abalones demonstrated apparent Mendelian segregations (1:1 or 3:1) in shell colors in F-2 families, which support the notion that the O- and G-types are under strict genetic control at a single locus With a recessive o (for orange shell) allele and a dominant G (for green shell) allele. Feeding with different diets caused modifications of shell color within each genotype, ranging from orange to yellow for O-type and green to dark-brown for the G-type, without affecting the distinction between genotypes. A previously described bluish-purple (B-type) shell color was found in one of the putative oo X oG crosses, suggesting that the B-type may be it recessive allele belonging to the same locus. The new O-type variant had no effect on the growth of Pacific abalone on the early seed-stage. This Study demonstrates that shell color in Pacific abalone is subject to genetic control as well as dietary modification, and the latter probably offers selective advantages in camouflage and predator avoidance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The x- and y-type high molecular weight (HMW) glutenin subunits are conserved seed storage proteins in wheat and related species. Here we describe investigations on the HMW glutenin subunits from several Pseudoroegneria accessions. The electrophoretic mobilities of the HMW glutenin subunits from Pd. stipifolia, Pd tauri and Pd strigosa were much faster than those of orthologous wheat subunits, indicating that their protein size may be smaller than that of wheat subunits. The coding sequence of the Glu-1St1 subunit (encoded by the Pseudoroegneria stipifolia accession PI325181) was isolated, and found to represent the native open reading frame (ORF) by in vitro expression. The deduced amino acid sequence of Glu-1St1 matched with that determined from the native subunit by mass spectrometric analysis. The domain organization in Glu-1St1 showed high similarity with that of typical HMW glutenin subunits. However, Glu-1St1 exhibited several distinct characteristics. First, the length of its repetitive domain was substantially smaller than that of conventional subunits, which explains its much faster electrophoretic mobility in SDS-PAGE. Second, although the N-terminal domain of Glu-1St1 resembled that of y-type subunit, its C-terminal domain was more similar to that of x-type subunit. Third, the N- and C-terminat domains of Glu-1St1 shared conserved features with those of barley D-hordein, but the repeat motifs and the organization of its repetitive domain were more similar to those of HMW glutenin subunits than to D-hordein. We conclude that Glu-1St1 is a novel variant of HMW glutenin subunits. The analysis of Glu-1St1 may provide new insight into the evolution of HMW glutenin subunits in Triticeae species. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From St15 micro-carbon deep drawing steel sheets, two sets of samples with (r) over bar variant and Deltar constant, and (r) over bar constant and Deltar variant, were selected to carry out texture measurement and ODF analysis. A description of the texture characteristics and an investigation on the effect of the main textures on the (r) over bar and Deltar values were given. The results show that in the tested steel sheets no desired gamma < 111 > parallel to ND orientation line appears but gamma' orientation line located at <()over bar>=0-90 degrees, theta =19 degrees and phi =45 degrees, and L orientation line located around gamma < 111 > parallel to ND orientation line which spirally rotates from Psi =0 degrees, theta =54.7 degrees and phi =62.7 degrees to Psi =90 degrees, theta =40 degrees and phi =45 degrees occur. Among them, the L orientation line has a main influence on the (r) over bar value and the stronger the texture density, the higher the (r) over bar value is, but is somewhat detrimental to the Deltar value; at the same time, the gamma' orientation line has a major effect on the Deltar value in an opposite way, but is somewhat deteriorative to the (r) over bar value. A strong L orientation line superposed by a relatively strong gamma' orientation line may produce fine (r) over bar and Deltar values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many experimental observations have shown that a single domain in a ferroelectric material switches by progressive movement of domain walls, driven by a combination of electric field and stress. The mechanism of the domain switch involves the following steps: initially, the domain has a uniform spontaneous polarization; new domains with the reverse polarization direction nucleate, mainly at the surface, and grow though the crystal thickness; the new domain expands sideways as a new domain continues to form; finally, the domain switch coalesces to complete the polarization reversal. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of the ferroelectric material and used to study the nonlinear constitutive behavior of a ferroelectric body in this paper. The principle of stationary total potential energy is put forward in which the basic unknown quantities are the displacement u(i), electric displacement D-i and volume fraction rho(I) of the domain switching for the variant I. The mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total potential energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion established by Hwang et al. [ 1]. Based on the domain switching criterion, a set of linear algebraic equations for determining the volume fraction rho(I) of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. If the volume fraction rho(I) of domain switching for each domain is prescribed, the unknown displacement and electric potential can be obtained based on the conventional finite element procedure. It is assumed that a domain switches if the reduction in potential energy exceeds a critical energy barrier. According to the experimental results, the energy barrier will strengthen when the volume fraction of the domain switching increases. The external mechanical and electric loads are increased step by step. The volume fraction rho(I) of domain switching for each element obtained from the last loading step is used as input to the constitutive equations. Then the strain and electric fields are calculated based on the conventional finite element procedure. The finite element analysis is carried out on the specimens subjected to uniaxial coupling stress and electric field. Numerical results and available experimental data are compared and discussed. The present theoretic prediction agrees reasonably with the experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell adhesion, mediated by specific receptor-ligand interactions, plays an important role in biological processes such as tumor metastasis and inflammatory cascade. For example, interactions between beta(2)-integrin ( lymphocyte function-associated antigen-1 and/or Mac-1) on polymorphonuclear neutrophils (PMNs) and ICAM-1 on melanoma cells initiate the bindings of melanoma cells to PMNs within the tumor microenvironment in blood flow, which in turn activate PMN-melanoma cell aggregation in a near-wall region of the vascular endothelium, therefore enhancing subsequent extravasation of melanoma cells in the microcirculations. Kinetics of integrin-ligand bindings in a shear flow is the determinant of such a process, which has not been well understood. In the present study, interactions of PMNs with WM9 melanoma cells were investigated to quantify the kinetics of beta(2)-integrin and ICAM-1 bindings using a cone-plate viscometer that generates a linear shear flow combined with a two-color flow cytometry technique. Aggregation fractions exhibited a transition phase where it first increased before 60 s and then decreased with shear durations. Melanoma-PMN aggregation was also found to be inversely correlated with the shear rate. A previously developed probabilistic model was modified to predict the time dependence of aggregation fractions at different shear rates and medium viscosities. Kinetic parameters of beta(2)-integrin and ICAM-1 bindings were obtained by individual or global fittings, which were comparable to respectively published values. These findings provide new quantitative understanding of the biophysical basis of leukocyte-tumor cell interactions mediated by specific receptor-ligand interactions under shear flow conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemisorption of CO on a Cr( 110) surface is investigated using the quantum Monte Carlo method in the diffusion Monte Carlo (DMC) variant and a model Cr2CO cluster. The present results are consistent with the earlier ab initio HF study with this model that showed the tilted/ near-parallel orientation as energetically favoured over the perpendicular arrangement. The DMC energy difference between the two orientations is larger (1.9 eV) than that computed in the previous study. The distribution and reorganization of electrons during CO adsorption on the model surface are analysed using the topological electron localization function method that yields electron populations, charge transfer and clear insight on the chemical bonding that occurs with CO adsorption and dissociation on the model surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many physical experiments have shown that the domain switching in a ferroelectric material is a complicated evolution process of the domain wall with the variation of stress and electric field. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of ferroelectric ceramic and used to study the nonlinear constitutive behavior of ferroelectric body in this paper. The principle of stationary total energy is put forward in which the basic unknown quantities are the displacement u (i) , electric displacement D (i) and volume fraction rho (I) of the domain switching for the variant I. Mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion. On the basis of the domain switching criterion, a set of linear algebraic equations for the volume fraction rho (I) of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. Then a single domain mechanical model is proposed in this paper. The poled ferroelectric specimen is considered as a transversely isotropic single domain. By using the partial experimental results, the hardening relation between the driving force of domain switching and the volume fraction of domain switching can be calibrated. Then the electromechanical response can be calculated on the basis of the calibrated hardening relation. The results involve the electric butterfly shaped curves of axial strain versus axial electric field, the hysteresis loops of electric displacement versus electric filed and the evolution process of the domain switching in the ferroelectric specimens under uniaxial coupled stress and electric field loading. The present theoretic prediction agrees reasonably with the experimental results given by Lynch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文的研究成果是世界上第一台热压缩机驱动的液氮温区脉冲管制冷机.它的主要特点是采用热压缩机来驱动脉冲管制冷机,主要研究目标有以下两个:无阀压缩机驱动的高效率液氦温区制冷机和使用最小容积的氦3得到低于2K的最低温度.热压缩机的设计与VM制冷机类似,利用室温和液氮之间的温差产生压力波,但一个重要的发明是功传递管的引入使得本系统中的热压缩机没有低温下的运动部件.使用这种设计也是一个全新的研究,它的重要性可以与脉冲管的引入取消了制冷机低温下的运动部件比拟.笔者进行了最初原型的调试,提出并完成了两次重要改进;最后在压比小于1.3的情况下成功地获得了3.5K的最低温度;为以后的发展打下了好的基础.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

该文利用数值模拟和理论分析的方法,研究了微重力下环境气体中的惰性气体辐射再吸收特性和环境压力等参数对火焰沿薄燃料表面传播的影响,以及微重力下水雾对固体扩散火焰的抑制,并对静止微重力下的驻火焰存在条件进行了分析,得到了如下主要结论:1.惰性气体对火焰传播有重要的影响.当惰性气体为N<,2>时,导热是火焰向燃料表面传热的主要形式.火焰传播存在冷熄控制区,在此区域内,火焰传播速度随着环境气体流速的增大而增大.当惰性气体为CO<,2>时,在小空气流动速度下,火焰向燃料表面的热辐射和热传导在火焰传播机理中几乎具有同等重要的作用,但随着空气流动速度的增大,导热逐渐成为火焰传播的主要驱动力.2.当惰性气体具有不同辐射特性时,环境压力对火焰沿燃料表面传播的影响具有不同的特征.当惰性气体为N<,2>时,在较小的环境压力下,火焰向燃料表面的热传导是火焰传播的主要驱动力.但随着环境压力的增大,火焰传播速度逐渐增大,火焰对燃料表面的热辐射逐渐成为火焰传播的主要驱动力之一.3.在正常重力环境中,自然对流不利于水雾灭火,水雾对燃料表面的冷却降温是水雾灭火的主要机理.而在微重力环境中,自然对流的消失增强了水雾对固体扩散火焰的抑制作用.水雾不仅能通过润湿燃料表面抑制火焰的传播,而且也可通过气相区域的吸热效应、稀释效应和化学反应链终止效应对火焰传播产生较强的抑制作用.4.空气流动强化燃烧,减少水雾在火焰锋面的蒸发量,使水雾对燃烧的抑制作用减弱.5.在微重力下,水务直径越小,水雾对火焰的抑制作用越强.在远离灭火浓度的情况下,可以通过减小水雾直径的方法增强对燃烧的抑制,但效果有限.6.球形物体在静止环境中燃烧时,存在两个使火焰熄灭的极限直径.当直径小于小的极限直径时,火焰由于质量扩散和能量扩散而熄灭;当球体直径大于大的极限直径时,火焰由于辐射损失而熄灭.7.在静止微重力环境中,无论环境气体中的氧浓度有多高,无限长圆柱形燃料燃烧不可能形成稳定的柱面扩散火焰;无限大平板燃料燃烧不可能产生无限大平面扩散火焰.