57 resultados para IgG


Relevância:

10.00% 10.00%

Publicador:

Resumo:

吗啡是临床常用的镇痛药物之一,通过模拟内源性抗痛物质脑啡肽的作用,激活中枢神经阿片受体而产生强大的镇痛作用。吗啡属于阿片类生物碱,为阿片受体激动剂,是目前我国主要的毒品成瘾类型之一,对人民生命健康危害极大。目前我国登记在册的吗啡成瘾者约有100万,每年导致的直接经济损失超过1000亿元。因此吗啡成瘾机制的研究以及治疗,是目前神经疾病的研究重点之一。 吗啡成瘾与其结合的受体有关。吗啡除结合阿片受体外,也可能结合大麻素受体,现发现体内有两种大麻素受体的存在:CB1受体和CB2受体。大麻CB1、CB2受体都是G蛋白耦联受体。其中CB1受体主要位于脑、脊髓与外周神经系统中,脑内CB1受体主要分布于基底神经节(黑质、苍白球、外侧纹状体)、海马CA锥体细胞层,小脑和大脑皮层。因此推测大麻CB1受体的功能可能与成瘾、记忆、认知、运动控制的调节有关。而大麻CB2受体主要分布于外周组织,如脾脏边缘区、扁桃体等,它的这种分布可能与免疫抑制作用有关。近来的研究发现大麻CB2受体在中枢神经系统也有分布,目前对其在此分布的功能不明确,推测可能与成瘾、抑郁症等神经类疾病有密切关系。 在药物成瘾导致的精神依赖作用中,奖赏效应是各种药物成瘾的药理学基础。中脑—边缘系统((mesolimbic dopamine system,MLDS)是药物奖赏效应的神经解剖学基础。目前认为内源性大麻素所起的药理作用与多巴胺能和阿片能的神经传递有密切的关系。因此推断大麻素CB1受体与慢性吗啡成瘾有密切关系,至少是部分参与到慢性吗啡成瘾过程中。 相较于较多的关于大麻CB1受体的研究,有关大麻CB2受体的研究很少。尽管近来证实大麻CB2受体也分布于中枢神经系统,但在慢性吗啡成瘾时,大麻CB2受体表达的改变仍不清楚。在本项目中,我们将对慢性吗啡成瘾动物通过分子生物学、蛋白质化学、免疫组织化学的方法,探讨大麻CB2受体在中枢神经系统的分布和表达,以及大麻CB2受体在吗啡成瘾中可能的作用。 吗啡对免疫系统有抑制作用, 包括抑制淋巴细胞增殖, 减少细胞因子的分泌,减弱自然杀伤细胞(NKC)的细胞毒作用。现已证实激活周围神经系统的CB2受体可诱导IL-4的生成,从而影响阿片μ型受体的转录。此发现提供了内源性大麻系统-阿片系统-免疫系统之间存在相互作用的关系。然而,吗啡吸食是否通过CB2受体从而导致免疫功能的抑制,现在还没有直接证据,在本实验中我们将探讨CB2受体与吗啡成瘾导致免疫功能的改变有关。 实验结果显示(1)应用RT-PCR法,检测到大麻素受体CB1在慢性吗啡成瘾大鼠的皮质和海马处mRNA表达水平与对照组大鼠有明显不同。(2)应用western免疫印迹法,检测到大麻素受体CB1在慢性吗啡成瘾大鼠的皮质,海马和脑干处蛋白表达水平与对照组大鼠有明显不同。在脑干处,虽然mRNA表达水平无变化,但蛋白质的表达水平上升。(3)应用免疫组化检测到大麻素受体CB1在大鼠的皮质,海马,脑干,小脑处都广泛分布。(4)应用RT-PCR法,检测到大麻素受体CB2在慢性吗啡成瘾大鼠的皮质,海马,脑干处mRNA表达水平与对照组大鼠有明显不同。(5)应用western免疫印迹法,检测到大麻素受体CB2在慢性吗啡成瘾大鼠的皮质,海马,脑干蛋白表达水平与对照组大鼠有明显不同。且蛋白质的表达改变趋势与mRNA表达水平的改变相似。(6)应用免疫组化法检测到大麻素受体CB2在大鼠的皮质,海马,脑干,小脑处都广泛分布。但数量明显少于大麻CB1受体。(7)应用直接ELISA法,检测到慢性吗啡成瘾大鼠的血清与对照组大鼠的血清比较,IgM表达下降;IgG表达上升。 实验结果提示大麻受体CB1和CB2 很可能在慢性吗啡成瘾过程起着重要的作用,至少是部分参与到慢性吗啡成瘾的过程中。因为大麻素受体CB1和CB2都属于G 蛋白耦连受体,长期持续使用吗啡,其表达的变化可能会导致cAMP信号通路的上调;提高了腺苷酸环化酶(AC)和蛋白激酶A(PKA)的活性从而激活下游相关基因的表达最终导致成瘾。此外大麻素受体CB1和CB2表达的变化可能与慢性吗啡成瘾后免疫功能的改变有相关性。 通过以上的的实验结果,可以得到以下的结论:(1)我们验证了大麻素受体CB1在慢性吗啡成瘾大鼠的皮质,海马和脑干处mRNA和蛋白质表达水平与对照组大鼠有明显不同,且大麻CB1受体在大鼠中枢神经系统中广泛大量分布,表明大麻素受体CB1很可能在慢性吗啡成瘾过程中起着重要的作用,至少部分参与到慢性吗啡成瘾的过程中。(2)我们第一次证实了大麻素受体CB2在吗啡成瘾大鼠的皮质,海马和脑干处mRNA和蛋白质表达水平与对照组大鼠有明显不同,且大麻CB2受体在大鼠中枢神经系统中少量广泛分布。表明大麻素受体CB2很可能在慢性吗啡成瘾过程中起着重要的作用,至少部分参与到慢性吗啡成瘾的过程中。(3)同时我们发现大麻素受体CB1和CB2在大鼠脑组织中广泛表达,表明内源性大麻系统有可能广泛的参与各种神经疾病,很可能成为治疗的新靶点。(4)最后我们发现慢性吗啡成瘾大鼠血液中IgM表达下降;IgG表达上升,表明慢性吗啡成瘾对机体的免疫功能有广泛的调节作用。慢性吗啡成瘾大鼠血清CB2受体mRNA表达上升。我们证实了大麻受体CB2可能正是把神经系统和免疫系统相联系的一个靶点。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

为了弄清生殖道内抗体,特别是IgA抗体的准确来源和它的调控因子,同时也为了弄清生殖的局部免疫与典型的粘腊免疫之间的关系,以同位素标记的针对精子特有抗原乳酸脱氢酶C4(LDH-C4)的多聚IgA单抗及其单体,与小鼠精子发生反应的IgA单抗,以及LDH-C4特异的IgG抗体,尾静脉注射给雌雄Balb/c小鼠,4小时后测定小鼠的生殖道及其分汾物,肠道、呼吸道及其分泌物,各相关淋巴组织以及其它器官内这些抗体的分布。还研究了特异抗原刺激、性激素等对这些抗体分布状况的影响。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

microarray approach based on surface-enhanced Raman spectroscopic (SERS) was developed for detection of spotted peptide, peptide-protein or protein-antibody interaction. The procedure involves the attachment of peptide-capped gold nanoparticles followed by silver deposition for signal enhancement. The attachment of the gold nanoparticles is achieved by standard avidin-biotin chemistry. The well-known biomolecular recognition pairs, IgG/protein A and biotin/avidin, were used to demonstrate proof-of-concept of the SERS assay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, a sensitive spectroscopic assay based on surface-enhanced Raman spectroscopy (SERS) using gold nanoparticles as substrates was developed for the rapid detection protein-protein interactions. Detection is achieved by specific binding biotin-modification antibodies with protein-stabilized 30 nm gold nanoparticles, followed by the attachment of avidin-modification Raman-active dyes. As a proof-of-principle experiment, a well-known biomolecular recognition system, IgG with protein A, was chosen to establish this new spectroscopic assay. Highly selective recognition of IgG down to 1 ng/ml in solution has been demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colloidal Au particles have been deposited on the gold electrode through layer-by-layer self-assembly using cysteamine as cross-linkers. Self-assembly of colloidal Au on the gold electrode resulted in ail easier attachment of antibody, larger electrode surface and ideal electrode behavior. The redox reactions of [Fe(CN)(6)]-/[Fe(CN)(6)](3-) on the gold surface were blocked due to antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.0 with various concentrations of antigen at 37degreesC for 30 min. Further, an amplification strategy to use biotin conjugated antibody was introduced for improving the sensitivity of impedance measurements. Thus, the sensor based oil this immobilization method exhibits a large linear dynamic range, from 5 - 400 mug/L for detection of Human IgG. The detection limit is about 0.5 mug/L.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过固相时间分辨荧光免疫分析双功能螯合剂 4 ,7 二氯磺基苯 1,10菲罗啉 2 ,9 二羧酸标记抗 乙型肝炎表面抗体 (HBsAb)IgG实验 ,对于BCPDA标记蛋白质的方法进行了研究。结果表明 :BCPDA在相对温和条件下能与蛋白质反应 ,反应后蛋白质的相对生物活性高于 78% ,标记比为 2 3~ 5 5 ,蛋白回收率达6 0 %以上。在一定条件下与铕离子形成稳定的BCPDA Eu3 + (HBsAb)IgG标记物。利用自建的分析方法 ,测定了标记过程的有关参数。并对标记物的某些光学特性进行了研究。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The speciation and distribution of Zn(II) and the effect of Gd(III) on Zn(II) speciation in human blood plasma were studied by computer simulation. The results show that, in normal blood plasma, the most predominant species of Zn(II) are [Zn(HSA)] (58.2%), [Zn(IgG)](20.1%), [Zn(Tf)] (10.4%), ternary complexes of [Zn(Cit)(Cys)] (6.6%) and of [Zn(Cys)(His)H] (1.6%), and the binary complex of [Zn(CYS)(2)H] (1.2%). When zinc is deficient, the distribution of Zn(II) species is similar to that in normal blood plasma. Then, the distribution changes with increasing zinc(II) total concentration. Overloading Zn(II) is initially mainly bound to human serum albumin (HSA). As the available amount of HSA is exceeded, phosphate metal and carbonate metal species are established. Gd(III) entering human blood plasma predominantly competes for phosphate and carbonate to form precipitate species. However, Zn(II) complexes with phosphate and carbonate are negligible in normal blood plasma, so Gd(III) only have a little effect on zinc(II) species in human blood plasma at a concentration above 1.0x10(-4) M.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel sensitive electrochemical immunoassay with colloidal gold as the antibody labeling tag and subsequent signal amplification by silver enhancement is described. Colloidal gold was treated by a light-sensitive silver enhancement system which made silver deposit on the surface of colloidal gold(form Au/Ag core-shell structure), followed by the release of the metallic silver atoms anchored on the antibody by oxidative dissolution of them in an acidic solution and the indirect determination of the dissolved Ag+ ions by anodic stripping voltammetry(ASV) at a carbon fiber microelectrode. The electrochemical signal is directly proportional to the amount of analyte(goat IgG) in the standard or a sample. The method was evaluated by means of a noncompetitive heterogeneous immunoassay of immunoglobulin G(IgG) with a concentration as low as 0.2 ng/ mL. The high performance of the method is related to the sensitive ASV determination of silver(I) at a carbon fiber microelectrode and to the release of a large number of Ag+ ions from each silver shell anchored on the analyte(goat IgG).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A flow injection amperometric immunoassay system based on the use of screen-printed carbon electrode for the detection of mouse IgG was developed. An immunoelectrode strip, on which an immunosorbent layer and screen-printed carbon electrode were integrated, and a proposed flow cell have been fabricated. The characterization of the flow immunoassay system and parameters affecting the performance of the immunoassay system were studied and optimized. Amperometric detection at 0.0 V (versus Ag/AgCl) resulted in a linear detection range of 30-700 ng ml(-1), with a detection limit of 3 ng ml(-1). The signal variation among electrode strips prepared from variant batch did not exceed 8.5% (n = 7) by measuring 0.5 mug ml(-1) antigen standard solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文采用双功能试剂1,4-丁二醇二环氧甘油醚将抗体共价固定在组装有半胱胺的金片电极表面,以辣根过氧化物酶为标记酶,以亚铁氰化钾为电子介体,采用三明治法在流动体系中对山羊抗小鼠IgG进行了检测.对检测条件进行了优化.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本研究以时间分辨激发荧光光谱分析技术为基础,进行稀土离子标记的激光激发的时间分辨荧光免疫分析(TRFIA)研究.实验以自行合成的二乙三胺五醋酸酐(DTPAA)为双功能螯合剂.用Eu3+标记兔抗人(RAH)IgG抗体,依据解离增强原理(DELFIA),研究了Eu3+-β萘甲酰三氟丙酮(β-NTA)的荧光分辨体系,测定了荧光光谱和荧光寿命,建立了铕离子分析检出方法,其工作曲线范围为1×10-7~1×10-11 g·mL-1,检测限为1×10-13 g·mL-1,相对标准偏差为6.4%.结合TRFIA方法学研究,进行了人血清丙型肝炎病毒抗体(Anti-HCV)检测.并同酶联免疫法(ELISA)对比.取得TRFIA法阳性检测率明显高于ELISA法的结果.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A surface plasmon resonance biosensor has been used to determine antibody activity in serum. As a model system, the interaction of mouse IgG and sheep anti-mouse IgG polyclonal antibody was investigated in real time. The factors, including pH value, ionic strength, protein concentration, influencing electrostatic adsorption of mouse IgG protein onto carboxylated dextran-coated sensor chip surface, were studied. The procedures of mouse IgG protein immobilization and immune reaction were monitored in real time. The regeneration effect using the different elution reagents was also investigated. The same mouse IgG immobilized surface can be used for 100 cycles of binding and elution with only 0.38% loss per regeneration in reactivity. The results show that the surface plasmon resonance biosensor is a rapid, simple, sensitive, accurate and reliable detection technique for real-time immunoassay of antibody activity. The assay allows antibodies to be detected and studied in their native form without any purification. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combination of affinity extraction procedures with mass spectrometric analyses is termed affinity-directed mass spectrometry, a technique that has gained broad interest in immunology and is extended here with several improvements from methods used in previous studies. A monoclonal antibody was immobilized on a nitrocellulose (NC) membrane, allowing the corresponding antigen to be selectively captured from a complex solution for analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). This method was also used to rapidly determine the approximate binding region responsible for the antibody/antigen interaction. The tryptic fragments of antigen protein in buffer were applied to the antibody immobilized on NC film and allowed to interact. The NC film was then washed to remove salts and other unbound components, and subjected to analysis by MALDI-TOFMS. Using interferon-alpha (2a) and anti-interferon-alpha (2a) monoclonal antibody IgG as a model system, we successfully extracted the antigen protein and determined the approximate binding region for the antigen/antibody interaction (i.e., the tryptic fragment responsible). Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multi-phase model was developed and Tb(III) speciation in human blood plasma was studied. At a concentration below 3.744x 10(-4) mol/L (or at the concentration), Tb(III) is mostly bound to phosphate to form precipitate of TbPO4. As the concentration of Tb(III) increases, phosphate is exceeded and another kind of precipitate of Tb-2(CO3)(3) appears. Among soluble Tb(III) species, Tb(III) mainly distribute in [Tb (Tf)] at low concentration and in [Tb (HSAA, [Tb-2 (Tf)], [Th (IgG)], [Tb (Lactate)](2+), [Tb (CitArgH)] and free Tb(III) at high concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The elucidation of key influence factors for electrostatic adsorption is very important to control protein nonspecific adsorption on modified surfaces. In this study, real-time surface plasmon resonance technique is used to characterize the electrostatic adsorption of two proteins (mouse IgG and protein A) on carboxymethyldextran-modified surface. The results show that protein solution pH and ionic strength are key influence factors for efficient electrostatic adsorption. The influence of protein, solution pH on the amount of electrostatic adsorption depends on the type of the charge and the charge density of both protein and modified matrix on the surface. The electrostatic adsorption process involves a competition between the positively charged protein and other positively charged species in the buffer solution. A decrease of ionic strength leads to an increasing electrostatic adsorption. The kinetic adsorption constants of protein A at different pH values were also calculated and compared.