55 resultados para Bacteria patogenica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A basic understanding of abundance and diversity of antibiotic-resistant microbes and their genetic determinants is necessary for finding a way to prevent and control the spread of antibiotic resistance. For this purpose, chloramphenicol and multiple antibiotic-resistant bacteria were screened from a mariculture farm in northern China. Both sea cucumber and sea urchin rearing ponds were populated with abundant antibiotic-resistant bacteria, especially marine vibrios. Sixty-five percent chloramphenicol-resistant isolates from sea cucumber harbored a cat gene, either cat IV or cat II, whereas 35% sea urchin isolates harbored a cat gene, actually cat II. The predominant resistance determinant cat IV gene mainly occurred in isolates related to Vibrio tasmaniensis or Pseudoalteromonas atlantica, and the cat II gene mainly occurred in Vibrio splendidus-like isolates. All the cat-positive isolates also harbored one or two of the tet genes, tet(D), tet(B), or tet(A). As no chloramphenicol-related antibiotic was ever used, coselection of the cat genes by other antibiotics, especially oxytetracycline, might be the cause of the high incidence of cat genes in the mariculture farm studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rel/NF kappa B is a family of transcription factors. In the present study, a Rel/NF kappa B family member, Dorsal homolog (FcDorsal) was cloned from the Chinese shrimp Fenneropenaeus chinensis. The full length cDNA of FcDorsal consists of 1627 bp, revealed a 1071 bp open reading frame encoding 357 aa. The predicted molecular weight (MW)of the deduced amino acid sequence of FcDorsal was 39.78 kDa, and its theoretical pl was 8.85. Amino acid sequence analysis showed that FcDorsal contains a Rel homolog domain (RHD) and an IPT/TIG (Ig-like, plexins and transcriptions factors) domain. The signature sequence of dorsal protein existed in the deduced amino acid sequence. Spatial expression profiles showed that FcDorsal had the highest expression level in the hemocytes and lymphoid organ (Oka). The expression profiles in the hemocytes and lymphoid organ were apparently modulated when shrimp were stimulated by bacteria or WSSV. Both Gram-positive (G(+)) bacteria (Micrococcus lysodeikticus) and Gram-negative (G(-)) bacteria (Vibrio anguillarium) injection to shrimp caused the up-regulation of FcDorsal at the transcription level. DsRNA approach was used to study the function of FcDorsal and the data showed that FcDorsal was related to the transcription of Penaeidin 5 in shrimp. The present data provide clues that FcDorsal might play potential important roles in the innate immunity of shrimp. Through comparison of the expression profiles between FcDorsal and another identified Rel/NF kappa B member (FcRelish) in shrimp responsive to WSSV challenge, we speculate that FcDorsal and FcRelish might play different roles in shrimp immunity. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyculture of seaweeds alongside fed animal aquaculture is an environmentally friendly means of avoiding eutrophication problem both in land-based and sea-based monoculture systems. Many aspects of such polyculture systems have been described, but little attention has been given to the impact of live seaweeds on the microbiological properties of the water that connects the algae and animals. In this investigation, the Pacific red alga Gracilaria textorii was cultured in a recirculated dual tank system (150 L) with the juvenile abalone Haliotis discus hannai. Dynamic changes of total bacteria (TB) and total Vibrio (TV) in the water of polyculture and monoculture systems were evaluated. Results revealed that (1) level of TB in the polyculture was constantly higher than in the monoculture over a 6.5-day period. While levels of TV in the polyculture was detected to be constantly lower than in the monoculture, (2) integration of G. textorii in the abalone culture changed the Vibrio compositions in the water as judged by the changes of bacteria colony types; (3) application of artificial diet led to dramatic increase of the levels in TB and TV in both systems at 12 h after application in the 24-h test and resulted in selective propagation of Vibrio in the water in the monoculture system; (4) polyculture of G. textorii with juvenile abalone in combination with feeding with live algal diet helped to maintain low levels of TV and the balance of the Vibrio composition; (5) living biomass of G. textorii was effective in preventing propagation of two purified Vibrio strains (V alginolaticus and V logei) in the water. These results provide a general basis of the dynamic changes of levels in TB and TV in a seaweed-abalone polyculture system with or without artificial diet in tanks. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat shock protein 70 (HSP70) is an important member of the heat shock protein superfamily, and it plays a key role in the process of protecting cells, facilitating the folding of nascent peptides and responding to stress. The cDNA of bay scallop Argopecten irradians HSP70 (designated AIHSP70) was cloned by the techniques of homological cloning and rapid amplification of cDNA end (RACE). The full length of AIHSP70 cDNA was 2651 bp in length, having a 5' untranslated region (UTR) of 96 bp, a 3' UTR of 575 bp, and an open reading frame (ORF) of 1980 bp encoding a polypeptide of 659 amino acids with an estimated molecular mass of 71.80 kDa and an estimated isoelectric point of 5.26. BLAST analysis revealed that the AIHSP70 gene shared high identity with other known HSP70 genes. Three classical HSP signature motifs were detected in AIHSP70 by InterPro, analysis. 3-D structural prediction of AIHSP70 showed that its N terminal ATPase activity domain and,C terminal substrate-binding domain shared high similarity with that in human heat shock protein 70. The results indicated that the AIHSP70 was a member of the heat shock protein 70 family. A semi-quantitive RT-PCR method was used to analyse the expression of AIHSP70 gene after the treatment of naphthalin which is one kind of polycyclic aromatic hydrocarbon (PAH) and the challenge of bacteria. mRNA expression of AIHSP70 in scallop was up-regulated significantly after the stimulation of naphthalin and increased with increasing naphthalin concentration. A clearly time-dependent expression pattern of AIHSP70 was observed after the scallops were infected by Vibrio anguillarum, and the mRNA expression reached a maximum level at 8 h and lasted to 16 h, and then dropped progressively. The results indicated that AIHSP70 could play an important role in mediating the environmental stress and immune response in scallop. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial surface colonization is a universal adaptation strategy in aquatic environments. However, neither the identities of early colonizers nor the temporal changes in surface assemblages are well understood. To determine the identities of the most common bacterial primary colonizers and to assess the succession process, if any, of the bacterial assemblages during early stages of surface colonization in coastal water of the West Pacific Ocean, nonnutritive inert materials (glass, Plexiglas, and polyvinyl chloride) were employed as test surfaces and incubated in seawater off the Qingdao coast in the spring of 2005 for 24 and 72 h. Phylogenetic analysis of the 16S rRNA gene sequences amplified from the recovered surface-colonizing microbiota indicated that diverse bacteria colonized the submerged surfaces. Multivariate statistical cluster analyses indicated that the succession of early surface-colonizing bacterial assemblages followed sequential steps on all types of test surfaces. The Rhodobacterales, especially the marine Roseobacter clade members, formed the most common and dominant primary surface-colonizing bacterial group. Our current data, along with previous studies of the Atlantic coast, indicate that the Rhodobacterales bacteria are the dominant and ubiquitous primary surface colonizers in temperate coastal waters of the world and that microbial surface colonization follows a succession sequence. A conceptual model is proposed based on these findings, which may have important implications for understanding the structure, dynamics, and function of marine biofilms and for developing strategies to harness or control surface-associated microbial communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Southern Okinawa Trough is an area of focused sedimentation due to particulate matter export from the shelf of the East China Sea and the island of Taiwan. In order to understand the geomicrobiological characteristics of this unique sedimentary environment, bacterial cultivations were carried out for an 8.61 m CASQ core sediment sample. A total of 98 heterotrophic bacterial isolates were characterized based on 16S rRNA gene phylogenetic analysis. These isolates can be grouped into four bacterial divisions, including 13 genera and more than 20 species. Bacteria of the gamma-Proteobacteria lineage, especially those from the Halomonas ( 27 isolates) and Psychrobacter ( 20 isolates) groups, dominate in the culturable bacteria assemblage. They also have the broadest distribution along the depth of the sediment. More than 72.4% of the isolates showed extracellular hydrolytic enzyme activities, such as amylases, proteases, lipases and Dnases, and nearly 59.2% were cold-adapted exoenzyme-producers. Several Halomonas strains show almost all the tested hydrolases activities. The wide distribution of exoenzyme activities in the isolates may indicate their important ecological role of element biogeochemical cycling in the studied deep-sea sedimentary environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the deep-sea sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their community characteristics is still lacking, considering the vast area and volume of the deep-sea sedimentary environments. Sediment bacteria vertical distribution and community structure were studied of the E272 site in the East Pacific Ocean with the molecular methods of 16S rRNA gene T-RFLP (terminal restriction fragment length polymorphism) and clone library analyses. Layered distribution of the bacterial assemblages was detected by both methods, indicating that the shallow sediments (40 cm in depth) harbored a diverse and distinct bacterial composition with fine-scale spatial heterogeneity. Substantial bacterial diversity was detected and nine major bacterial lineages were obtained, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospirae, Planctomycetes, Proteobacteria, and the candidate divisions OP8 and TM6. Three subdivisions of the Proteobacteria presented in our libraries, including the alpha-, gamma- and delta-Proteobacteria. Most of our sequences have low similarity with known bacterial 16S rRNA genes, indicating that these sequences may represent as-yet-uncultivated novel bacteria. Most of our sequences were related to the GenBank nearest neighboring sequences retrieved from marine sediments, especially from deep-sea methane seep, gas hydrate or mud volcano environments. Several sequences were related to the sequences recovered from the deep-sea hydrothermal vent or basalt glasses-bearing sediments, indicating that our deep-sea sampling site might be influenced to certain degree by the nearby hydrothermal field of the East Pacific Rise at 13A degrees N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to gain an understanding of the diversity and distribution of antimicrobial-resistant bacteria and their resistance genes in maricultural environments, multidrug-resistant bacteria were screened for the rearing waters from a mariculture farm of China. Both abalone Haliotis discus hannai and turbot Scophthalmus maximus rearing waters were populated with abundant chloramphenicol-resistant bacteria. These bacteria were also multidrug resistant, with Vibrio splendidus and Vibrio tasmaniensis being the most predominant species. The chloramphenicol-resistance gene cat II, cat IV or floR could be detected in most of the multidrug-resistant isolates, and the oxytetracycline-resistance gene tet(B), tet(D), tet(E) or tet(M) could also be detected for most of the isolates. Coexistence of chloramphenicol- and oxytetracycline-resistance genes partially explains the molecular mechanism of multidrug resistance in the studied maricultural environments. Comparative studies with different antimicrobial agents as the starting isolation reagents may help detect a wider diversity of the antimicrobial-resistant bacteria and their resistance genes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protease-producing bacteria are known to play an important role in degrading sedimentary particular organic nitrogen, and yet, their diversity and extracellular proteases remain largely unknown. In this paper, the diversity of the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea was investigated. The richness of the cultivable protease-producing bacteria reached 10(6) cells/g in all sediment samples. Analysis of the 16S rRNA gene sequences revealed that the predominant cultivated protease-producing bacteria are Gammaproteobacteria affiliated with the genera Pseudoalteromonas, Alteromonas, Marinobacter, Idiomarina, Halomonas, Vibrio, Shewanella, Pseudomonas, and Rheinheimera, with Alteromonas (34.6%) and Pseudoalteromonas (28.2%) as the predominant groups. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria are serine proteases or metalloproteases. Moreover, these proteases have different hydrolytic ability to different proteins, reflecting they may belong to different kinds of serine proteases or metalloproteases. To our knowledge, this study represents the first report of the diversity of bacterial proteases in deep-sea sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of abundance, diversity and distribution of antibiotic-resistant bacteria and their resistance determinants are necessary for effective prevention and control of antibiotic resistance and its dissemination, critically important for public health and environment management. In order to gain an understanding of the persistence of resistance in the absence of a specific antibiotic selective pressure, microbiological surveys were carried out to investigate chloramphenicol-resistant bacteria and the chloramphenicol acetyltransferase resistance genes in Jiaozhou Bay after chloramphenicol was banned since 1999 in China. About 0.15-6.70% cultivable bacteria were chloramphenicol resistant, and the highest abundances occurred mainly in the areas near river mouths or sewage processing plants. For the dominant resistant isolates, 14 genera and 25 species were identified, mostly being indigenous estuarine or marine bacteria. Antibiotic-resistant potential human or marine animal pathogens, such as Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis and Shewanella algae, were also identified. For the molecular resistance determinants, the cat I and cat III genes could be detected in some of the resistant strains, and they might have the same origins as those from clinical strains as determined via gene sequence analysis. Further investigation about the biological, environmental and anthropogenic mechanisms and their interactions that may contribute to the persistence of antibiotic-resistance in coastal marine waters in the absence of specific antibiotic selective pressure is necessary for tackling this complicated environmental issue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted this study to assess the diversity of bacteria associated with the surfaces of algae based on 16S rDNA sequence analyses. Twelve strains of bacteria were obtained from the surfaces of the following four species of algae: Gracilaria textorii, Ulva pertusa, Laminaria japonica, and Polysiphonia urceolata. The isolated strains of bacteria can be divided into two groups: Halomonas and Vibrio, in physiology, biochemical characteristics and 16S rDNA sequence analyses. The phylogenetic tree constructed based on 16S rDNA sequences of the isolates shows four obvious clusters, Halomonas venusta, Vibrio tasmaniensis, Vibrio lentus, and Vibrio splendidus. Isolates from the surface of P. urceolata are more abundant and diverse, of which strains P9 and P28 have a 16S rDNA sequence very similar (97.5%-99.8%) to that of V. splendidus. On the contrary, the isolates from the surfaces of G textorii, U. pertusa and L. japonica are quite simple and distribute on different branches of the phylogenetic tree. In overall, the results of this study indicate that the genetic relationships among the isolates are quite close and display a certain level of host species specificity, and alga-associated bacteria species are algal species specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between Alexandrium tamarense (Lebour) Balech, one of red-tide alga, and two strains of marine bacteria, Bacillius megaterium(S-7) and B. halmapulus(S-10) isolated from Xiamen Western Sea, was investigated by evaluating the growth state of A. tamarense and the variation of P-glucosidase activity in co-culture system. The results showed the growth and multiplication of the alga were related with the concentration, genus speciality of the bacteria, and growth stage of the alga itself. The growth of A. tamarense was obviously inhibited by S7 and S, at high concentration. Either inhibition or promotion contributed much more clearly in earlier than in later stage of the growth of the alga. Furthermore, there was a roughly similar variation trend of the activity of extra-cellular enzyme, beta-glucosidase, in the water of the separately co-cultured bacteria S-7 and S-10 with the alga. The beta-glucosidase activity (beta-GlcA) rapidly increased during the later algal growth accompanying the increase of the lysis of the alga cells. The obvious inhibition of A. tamarense by marine bacteria at high concentration and evident increase of beta-GlcA in co-colture system would help us in better understanding the relationship between red-tide alga and bacteria, and also enlightened us the possible use of bacteria in the bio-control of red-tide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to explore marine microorganisms with medical potential, marine bacteria were isolated from seawater, sediment, marine invertebrates and seaweeds collected from different coastal areas of the China Sea. The antimicrobial activities of these bacteria were investigated. Ethyl acetate extracts of marine bacterial fermentation were screened for antimicrobial activities using the method of agar diffusion. The results showed that 42 strains of the isolates have antimicrobial activity. The proportion of active bacteria associated with marine invertebrates (20%) and seaweeds (11%) is higher than that isolated from seawater (7%) and sediment (5%). The active marine bacteria were assigned to the genera Alteromonas, Pseudomonas, Bacillus and Flavobacterium. The TLC autobiographic overlay assay implied that the antimicrobial metabolites produced by four strains with wide antimicrobial spectrum were different. Due to a competitive role for space and nutrient, the marine bacteria associated with marine macroorganisms (invertebrates and seaweeds) could produce more antibiotic substances. These marine bacteria were expected to be potential resources of natural antibiotic products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria isolated from a highly toxic sample of gastropod Nassarius semiplicatus in Lianyungang, Jiangsu Province in July 2007, were studied to probe into the relationship between bacteria and toxicity of nassariid gastropod. The toxicity of the gastropod sample was 2 x 10(2) mouse unit (MU) Per gram Of tissue (wet weight). High concentration of tetrodotoxin (TTX) and its analogues (TTXs) were found in the digestive gland and muscle of the gastropod, using high performance liquid chromatography coupled with mass chromatography (LC-MS). Bacterial strains isolated from the digestive gland were cultured and screened for TTX with a competitive ELISA method. Tetrodotoxin was detected in a proportion of bacterial strains, but the toxin content was low. Partial 16S ribosomal DNA (rDNA) of the TTX-producing strains was then sequenced and compared with those published in the GenBank to tentatively identify the toxic strains. It was found that most of the toxic strains were closely affiliated with genus Vibrio, and the others were related to genus Shewanella, Marinomonas, Tenacibaculum and Aeromonas. These findings suggest that tetrodotoxin-producing bacteria might play an important role in tetrodotoxin accumulation/production in N. semiplicatus. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distributions of heterotrophic bacterial abundance and production were investigated in the East China Sea and the Yellow Sea during the autumn of 2000 and spring of 2001. Bacterial abundance varied in the range 3.2-15.7 (averaging 5.7) x 10(5) and 2.3-13.6 (averaging 6.2) x 10(5) cells cm(-3) in the spring and autumn, respectively. During autumn, bacterial production (BP) (0.27-7.77 mg C m(-3) day(-1)) was on average 3 fold that in spring (0.001-2.04 mg C m(-3) day(-1)). Bacterial average turnover rate (ratio of bacterial production:bacterial biomass, mu=0.21 day(-1)) in autumn was 3 times as high as in spring (0.07 day(-1)). The ratio of integrated bacterial biomass to integrated phytoplankton biomass in the euphotic zone ranged from 4 to 101% (averaging 35%) in spring and 24 to 556% (averaging 121%) in autumn. The results indicate that the distributions of heterotrophic bacteria were controlled generally by temperature in spring and additionally by substrate supply in autumn. (C) 2010 Elsevier Ltd. All rights reserved.