19 resultados para mesenchymal stem cells (MSC), acute myocardial infarct (AMI), chemokine receptors, chemokines, migration, homing, engraftment, CD44


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generation of homogeneous oligodendrocytes as donor cells is essential for human embryonic stem cell (hESC)-based cell therapy for demylinating diseases. Herein we present a novel method for efficiently obtaining mature oligodendrocytes from hESCs with high purity (79.7 +/- 6.9%), using hepatocyte growth factor (HGF) and G5 supplement(containing insulin, transferrin, selenite, biotin, hydrocortisone, basic fibroblast growth factor and epidermal growth factor) in a four-step method. We induced hESCs into neural progenitors (NP) with HGF (5 ng/ml) and G5 (1 x) supplemented medium in an adherent differentiation system. The purified NPs were amplified in suspension as neurospheres for 1 month, and terminal oligodendrocyte differentiation was then induced by G5 supplement withdrawal and HGF treatment (20 ng/ml). The cells generated displayed typical morphologies of mature oligodendrocytes and expressed oligodendrocyte markers O4 and myelin basic protein (MBP). Our result revealed that HGF significantly enhanced the proliferation of hESC-derived NPs and promoted the differentiation as well as the maturation of oligodendrocytes from NPs. Further studies suggest that HGF/c-Met signaling pathway might play an important role in oligodendrocyte differentiation in our system. Our studies provide a means for generating the clinically relevant cell type and a platform for deciphering the molecular mechanisms that control oligodendrocyte differentiation. (C) 2009 International Society of Differentiation. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embryonic stem (ES) cells provide a unique tool for introducing random or targeted genetic alterations, because it is possible that the desired, but extremely rare recombinant genotypes can be screened by drug selection. ES cell-mediated transgenesis has so far been limited to the mouse. In the fish medaka (Oryzias latipes) several ES cell lines have been made available. Here we report the optimized conditions for gene transfer and drug selection in the medaka ES cell line MES1 as a prelude for gene targeting in fish. MES1 cells gave rise to a moderate to high transfection efficiency by the calcium phosphate co-precipitation (5%), commercial reagents Fugene (11%), GeneJuice (21%) and electroporation (>30%). Transient gene transfer and CAT reporter assay revealed that several enhancers/promoters and their combinations including CMV, RSV and ST (the SV40 virus early gene enhancer linked to the thymidine kinase promoter) were suitable regulatory sequences to drive transgene expression in the MES1 cells. We show that neo, hyg or pac conferred resistance to G418, hygromycin or puromycin for positive selection, while the HSV-tk generated sensitivity to ganciclovir for negative selection. The positive-negative selection procedure that is widely used for gene targeting in mouse ES cells was found to be effective also in MES1 cells. Importantly, we demonstrate that MES1 cells after gene transfer and long-term drug selection retained the developmental pluripotency, as they were able to undergo induced differentiation in vitro and to contribute to various tissues and organs during chimeric embryogenesis.