251 resultados para Membrane transporter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the design of affinity membranes, protein adsorption in membrane affinity chromatography (MAC) was studied by frontal analysis. According to fast mass transfer, small thickness of affinity membranes and high affinity between the protein and the ligand, an ideal adsorption (IA) model was proposed for MAC and was used together with equilibrium-dispersive (E-D) model to describe the adsorption of bovine serum albumin (BSA) onto cellulose diacetate/polyethyleneimine (CA/PEI) blend membranes with and without Cu2+ chelating. E-D model was found to better describe the initial region of experimental breakthrough curves. The influence of axial dispersion was revealed and it showed the importance of design of the module to homogenously distribute feed solution. IA model was found to be better for the whole experimental breakthrough curve. According to it, the capacity of affinity membranes and the specificity of the interaction are of equal importance for the design of affinity membranes. An optimum feed concentration was also found in the operation of MAC. The discrepancy between experimental optimum feed concentrations and predicted ones from IA model may be due to the ignorance of some experimental effects such as axial dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cells are recognized as the most promising new power generation technology, but hydrogen supply is still a problem. In our previous work, we have developed a LiLaNiO/gamma-Al2O3 catalyst, which is excellent not only for partial oxidation of hydrocarbons, but also for steam reforming and autothermal reforming. However, the reaction needs pure oxygen or air as oxidant. We have developed a dense oxygen permeable membrane Ba0.5Sr0.5Co0.8Fe0.2O3 which has an oxygen permeation flux around 11.5 ml/cm(2) min at reaction conditions. Therefore, this work is to combine the oxygen permeable membrane with the catalyst LiLaNiO/gamma-Al2O3 in a membrane reactor for hydrogen production by mixed reforming of heptane. Under optimized reaction conditions, a heptane conversion of 100%, a CO selectivity of 91-93% and a H-2 selectivity of 95-97% have been achieved. (c) 2005 Elsevier B.V. All rights reserved.