2 resultados para immune system diseases
em Cambridge University Engineering Department Publications Database
Resumo:
BACKGROUND: GABA(A) receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die. As many anaesthetics act via GABA(A) receptors, the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients. PRINCIPAL FINDINGS: We demonstrate, using RT-PCR, that monocytes express GABA(A) receptors constructed of α1, α4, β2, γ1 and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABA(A) receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABA(A) receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin. SIGNIFICANCE: Our results show that functional GABA(A) receptors are present on monocytes with properties similar to CNS GABA(A) receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABA(A) receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABA(A) receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anesthetising agent may be advantageous where infection is a life threatening problem.
Resumo:
The interaction between Salmonella enterica and the host immune system is complex. The outcome of an infection is the result of a balance between the in vivo environment where the bacteria survive and grow and the regulation of fitness genes at a level sufficient for the bacteria to retain their characteristic rate of growth in a given host. Using bacteriological counts from tissue homogenates and fluorescence microscopy to determine the spread, localization, and distribution of S. enterica in the tissues, we show that, during a systemic infection, S. enterica adapts to the in vivo environment. The adaptation becomes a measurable phenotype when bacteria that have resided in a donor animal are introduced into a recipient naïve animal. This adaptation does not confer increased resistance to early host killing mechanisms but can be detected as an enhancement in the bacterial net growth rate later in the infection. The enhanced growth rate is lost upon a single passage in vitro, and it is therefore transient and not due to selection of mutants. The adapted bacteria on average reach higher intracellular numbers in individual infected cells and therefore have patterns of organ spread different from those of nonadapted bacteria. These experiments help in developing an understanding of the influence of passage in a host on the fitness and virulence of S. enterica.