5 resultados para concentration response

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIMS: Our aim was to determine whether alterations in biomechanical properties of human diseased compared to normal coronary artery contribute to changes in artery responsiveness to endothelin-1 in atherosclerosis. MAIN METHODS: Concentration-response curves were constructed to endothelin-1 in normal and diseased coronary artery. The passive mechanical properties of arteries were determined using tensile ring tests from which finite element models of passive mechanical properties of both groups were created. Finite element modelling of artery endothelin-1 responses was then performed. KEY FINDINGS: Maximum responses to endothelin-1 were significantly attenuated in diseased (27±3 mN, n=55) compared to normal (38±2 mN, n=68) artery, although this remained over 70% of control. There was no difference in potency (pD2 control=8.03±0.06; pD2 diseased=7.98±0.06). Finite element modelling of tensile ring tests resulted in hyperelastic shear modulus μ=2004±410 Pa and hardening exponent α=22.8±2.2 for normal wall and μ=2464±1075 Pa and α=38.3±6.7 for plaque tissue and distensibility of diseased vessels was decreased. Finite element modelling of active properties of both groups resulted in higher muscle contractile strain (represented by thermal reactivity) of the atherosclerotic artery model than the normal artery model. The models suggest that a change in muscle response to endothelin-1 occurs in atherosclerotic artery to increase its distensibility towards that seen in normal artery. SIGNIFICANCE: Our data suggest that an adaptation occurs in medial smooth muscle of atherosclerotic coronary artery to maintain distensibility of the vessel wall in the presence of endothelin-1. This may contribute to the vasospastic effect of locally increased endothelin-1 production that is reported in this condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this letter, the uniform lying helix (ULH) liquid crystal texture, required for the flexoelectro-optic effect, is polymer stabilized by the addition of a small percentage of reactive mesogen to a high-tilt-angle (φ>60°) bimesogenic chiral nematic host. The electro-optic response is measured for a range of reactive mesogen concentration mixtures, and compared to the large-tilt-angle switch of the pure chiral nematic mixture. The optimum concentration of reactive mesogen, which is found to provide ample stabilization of the texture with minimal impact on the electro-optic response, is found to be approximately 3%. Our results indicate that polymer stabilization of the ULH texture using a very low concentration of reactive mesogen is a reliable way of ruggedizing flexoelectro-optic devices without interfering significantly with the electro-optics of the effect, negating the need for complicated surface alignment patterns or surface-only polymerization. The polymer stabilization is shown to reduce the temperature dependence of the flexoelectro-optic response due to "pinning" of the chiral nematic helical pitch. This is a restriction of the characteristic thermochromic behavior of the chiral nematic. Furthermore, selection of the temperature at which the sample is ultraviolet cured allows the tilt angle to be optimized for the entire chiral nematic temperature range. The response time, however, remains more sensitive to operating temperature than curing temperature. This allows the sample to be cured at low temperature and operated at high temperature, providing simultaneous optimization of these two previously antagonistic performance aspects. © 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fibre-epoxy composite square honeycombs, and the parent composite material, were tested in quasi-static compression at a strain rate of 10 -3 s -1 and in dynamic compression at strain rates of 10 3-10 4 s -1 using an instrumented Kolsky bar arrangement. Taken together, these tests provide an assessment of the potential of this composite topology for use as a lightweight sandwich core. The honeycombs had two relative densities, 0.12 and 0.24, and two material orientations, ±45° and 0/90° with respect to the prismatic, loading direction of the honeycomb. Honeycomb manufacture was by slotting, assembling and bonding together carbon fibre/epoxy woven plies of composite sheets of 2 × 2 twill weave construction. The peak value of wall stress in the honeycombs was about one third that of the parent material, for all strain rates. An elastic finite element analysis was used to trace the source of this knock-down in strength: a stress concentration exists at the root of the slots and leads to premature failure by microbuckling. Shock-wave effects were evident at impact velocities exceeding 50 ms -1 for the honeycomb of relative density 0.12. This was traced to stubbing of the buckled cell walls against the face of the Kolsky bar. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fast response sensor for measuring carbon dioxide concentration has been developed for laboratory research and tested on a spark ignition engine. The sensor uses the well known infra-red absorption technique with a miniaturized detection system and short capillary sampling tubes, giving a time constant of approximately 5 milliseconds; this is sufficiently fast to observe changes in CO2 levels on a cycle-by-cycle basis under normal operating conditions. The sensor is easily located in the exhaust system and operates continuously. The sensor was tested on a standard production four cylinder spark-ignition engine to observe changes in CO2 concentration in exhaust gas under steady state and transient operating conditions. The processed sensor signal was compared to a standard air-to-fuel ratio (AFR) sensor in the exhaust stream and the results are presented here. The high frequency response CO2 measurements give new insights into both engine and catalyst transient operation. Copyright © 1999 Society of Automotive Engineers, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding mixture formation phenomena during the first few cycles of an engine cold start is extremely important for achieving the minimum engine-out emission levels at the time when the catalytic converter is not yet operational. Of special importance is the structure of the charge (film, droplets and vapour) which enters the cylinder during this time interval as well as its concentration profile. However, direct experimental studies of the fuel behaviour in the inlet port have so far been less than fully successful due to the brevity of the process and lack of a suitable experimental technique. We present measurements of the hydrocarbon (HC) concentration in the manifold and port of a production SI engine using the Fast Response Flame Ionisation Detector (FRFID). It has been widely reported in the past few years how the FRFID can be used to study the exhaust and in-cylinder HC concentrations with a time resolution of a few degrees of crank angle, and the device has contributed significantly to the understanding of unburned HC emissions. Using the FRFID in the inlet manifold is difficult because of the presence of liquid droplets, and the low and fluctuating pressure levels, which leads to significant changes in the response time of the instrument. However, using recently developed procedures to correct for the errors caused by these effects, the concentration at the sampling point can be reconstructed to align the FRFID signal with actual events in the engine. © 1996 Society of Automotive Engineers, Inc.