2 resultados para Spirulina maxima

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the steam turbines which provide most of our electricity to the jet engines which have shrunk our World, turbomachines undoubtedly play a major role in life today. Competition in the turbomachinery industry is fiercely strong [Wisler, 1998], hence good aerodynamic design is vital. However, with efficiency levels already close to their theoretical maxima, companies are increasingly looking to reduce costs and increase reliability through improved design practice. Computational Fluid Dynamics (CFD) can make a strong contribution to assisting this process as it has the potential to increase performance while reducing cost. The situation is, however, complicated by an ever decreasing number of engineers with sufficient design experience to reap the full benefits offered by CFD. With the large risks involved, novice designers of today are increasingly confined to refining old designs rather than gaining experience, like their forebears, through 'clean sheet' exercises. Hence it is desirable to capture the knowledge and experience of older designers, before it is lost, to assist the engineers of tomorrow. It is therefore the aim of this project to produce a design support tool which will not only store the appropriate CFD codes, but also provide a dynamic signpost (based on elicited knowledge and experience) to advise the engineer in their use. The signposting methodology developed for the aerospace industry [Clarkson and Hamilton, 1997] will provide the basic framework for the tool. This paper reviews current turbomachinery design practice (including an examination of the relevant CFD) in order to establish the important issues which a support tool must address. Current design support methodologies and their propriety are then reviewed, followed by a detailed description of the signposting concept. It then sets out a clear statement of the objectives for the research and the methods proposed to meet them. The paper concludes with a timetable of the work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a methods of locating an RFID tag. One method comprises: transmitting tag location signals from a plurality of different transmit antennas, wherein said antennas are spaced apart by more than a near field limit distance at a frequency of a said signal; receiving a corresponding plurality of receiving return signals from said tag; and processing said tag return signals to determine a range to said tag; wherein said transmitting comprises transmitting at a plurality of different frequencies; wherein said processing comprises determining a phase difference at said plurality of different frequencies to determine said range, and wherein said determining of said phase difference determines a phase difference between either i) two or more of said transmit signals resulting in a maxima in the returned signal RSSI or ii) a first transmit signal and its corresponding return signal; and wherein said determining of said range to said tag uses said return signals weighted responsive to a respective received signal strength of the return signal. Further data which may be used for averaging may be generated by using the above techniques along with changes in the polarisation state of the transmit and receive antennas and/or physical reconfiguration of the antennas (e.g. switch the transmit and receive elements).