3 resultados para Souris knockout conditionnel

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transmission imaging with an environmental scanning electron microscope (ESEM) (Wet STEM) is a recent development in the field of electron microscopy, combining the simple preparation inherent to ESEM work with an alternate form of contrast available through a STEM detector. Because the technique is relatively new, there is little information available on how best to apply this technique and which samples it is best suited for. This work is a description of the sample preparation and microscopy employed by the authors for imaging bacteria with Wet STEM (scanning transmission electron microscopy). Three different bacterial samples will be presented in this study: first, used as a model system, is Escherichia coli for which the contrast mechanisms of STEM are demonstrated along with the visual effects of a dehydration-induced collapse. This collapse, although clearly in some sense artifactual, is thought to lead to structurally meaningful morphological information. Second, Wet STEM is applied to two distinct bacterial systems to demonstrate the novel types of information accessible by this approach: the plastic-producing Cupriavidus necator along with wild-type and ΔmreC knockout mutants of Salmonella enterica serovar Typhimurium. Cupriavidus necator is shown to exhibit clear internal differences between bacteria with and without plastic granules, while the ΔmreC mutant of S. Typhimurium has an internal morphology distinct from that of the wild type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transmission imaging with an environmental scanning electron microscope (ESEM) (Wet STEM) is a recent development in the field of electron microscopy, combining the simple preparation inherent to ESEM work with an alternate form of contrast available through a STEM detector. Because the technique is relatively new, there is little information available on how best to apply this technique and which samples it is best suited for. This work is a description of the sample preparation and microscopy employed by the authors for imaging bacteria with Wet STEM (scanning transmission electron microscopy). Three different bacterial samples will be presented in this study: first, used as a model system, is Escherichia coli for which the contrast mechanisms of STEM are demonstrated along with the visual effects of a dehydration-induced collapse. This collapse, although clearly in some sense artifactual, is thought to lead to structurally meaningful morphological information. Second, Wet STEM is applied to two distinct bacterial systems to demonstrate the novel types of information accessible by this approach: the plastic-producing Cupriavidus necator along with wild-type and δmreC knockout mutants of Salmonella enterica serovar Typhimurium. Cupriavidus necator is shown to exhibit clear internal differences between bacteria with and without plastic granules, while the δmreC mutant of S. Typhimurium has an internal morphology distinct from that of the wild type. © 2012 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Campylobacter jejuni is a leading cause of human diarrheal illness in the world, and research on it has benefitted greatly by the completion of several genome sequences and the development of molecular biology tools. However, many hurdles remain for a full understanding of this unique bacterial pathogen. One of the most commonly used strains for genetic work with C. jejuni is NCTC11168. While this strain is readily transformable with DNA for genomic recombination, transformation with plasmids is problematic. In this study, we have identified a determinant of this to be cj1051c, predicted to encode a restriction-modification type IIG enzyme. Knockout mutagenesis of this gene resulted in a strain with a 1,000-fold-enhanced transformation efficiency with a plasmid purified from a C. jejuni host. Additionally, this mutation conferred the ability to be transformed by plasmids isolated from an Escherichia coli host. Sequence analysis suggested a high level of variability of the specificity domain between strains and that this gene may be subject to phase variation. We provide evidence that cj1051c is active in NCTC11168 and behaves as expected for a type IIG enzyme. The identification of this determinant provides a greater understanding of the molecular biology of C. jejuni as well as a tool for plasmid work with strain NCTC11168. © 2012, American Society for Microbiology.