74 resultados para Multivariate statistics

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: A large proportion of students identify statistics courses as the most anxiety-inducing courses in their curriculum. Many students feel impaired by feelings of state anxiety in the examination and therefore probably show lower achievements. AIMS: The study investigates how statistics anxiety, attitudes (e.g., interest, mathematical self-concept) and trait anxiety, as a general disposition to anxiety, influence experiences of anxiety as well as achievement in an examination. SAMPLE: Participants were 284 undergraduate psychology students, 225 females and 59 males. METHODS: Two weeks prior to the examination, participants completed a demographic questionnaire and measures of the STARS, the STAI, self-concept in mathematics, and interest in statistics. At the beginning of the statistics examination, students assessed their present state anxiety by the KUSTA scale. After 25 min, all examination participants gave another assessment of their anxiety at that moment. Students' examination scores were recorded. Structural equation modelling techniques were used to test relationships between the variables in a multivariate context. RESULTS: Statistics anxiety was the only variable related to state anxiety in the examination. Via state anxiety experienced before and during the examination, statistics anxiety had a negative influence on achievement. However, statistics anxiety also had a direct positive influence on achievement. This result may be explained by students' motivational goals in the specific educational setting. CONCLUSIONS: The results provide insight into the relationship between students' attitudes, dispositions, experiences of anxiety in the examination, and academic achievement, and give recommendations to instructors on how to support students prior to and in the examination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An expression for the probability density function of the second order response of a general FPSO in spreading seas is derived by using the Kac-Siegert approach. Various approximations of the second order force transfer functions are investigated for a ship-shaped FPSO. It is found that, when expressed in non-dimensional form, the probability density function of the response is not particularly sensitive to wave spreading, although the mean squared response and the resulting dimensional extreme values can be sensitive. The analysis is then applied to a Sevan FPSO, which is a large cylindrical buoy-like structure. The second order force transfer functions are derived by using an efficient semi-analytical hydrodynamic approach, and these are then employed to yield the extreme response. However, a significant effect of wave spreading on the statistics for a Sevan FPSO is found even in non-dimensional form. It implies that the exact statistics of a general ship-shaped FPSO may be sensitive to the wave direction, which needs to be verified in future work. It is also pointed out that the Newman's approximation regarding the frequency dependency of force transfer function is acceptable even for the spreading seas. An improvement on the results may be attained when considering the angular dependency exactly. Copyright © 2009 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the response statistics of a dynamic system that has random properties. The frequency-band-averaged energy of the system is considered, and a closed form expression is derived for the relative variance of this quantity. The expression depends upon three parameters: the modal overlap factor m, a bandwidth parameter B, and a parameter α that defines the nature of the loading (for example single point forcing or rain-on-the-roof loading). The result is applicable to any single structural component or acoustic volume, and a comparison is made here with simulation results for a mass loaded plate. Good agreement is found between the simulations and the theory. © 2003 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the ensemble statistics of the response to harmonic excitation of a single dynamic system such as a plate or an acoustic volume. Random point process theory is employed, and various statistical assumptions regarding the system natural frequencies are compared, namely: (i) Poisson natural frequency spacings, (ii) statistically independent Rayleigh natural frequency spacings, and (iii) natural frequency spacings conforming to the Gaussian orthogonal ensemble (GOE). The GOE is found to be the most realistic assumption, and simple formulae are derived for the variance of the energy of the system under either point loading or rain-on-the-roof excitation. The theoretical results are compared favourably with numerical simulations and experimental data for the case of a mass loaded plate. © 2003 Elsevier Ltd. All rights reserved.