11 resultados para LOW-VOLUME

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aluminium-based composites, reinforced with low volume fractions of whiskers and small particles, have been formed by a powder route. The materials have been tested in tension, and the microstructures examined using transmission electron microscopy. The whisker composites showed an improvement in flow stress over the particulate composites, and this was linked to an initially enhanced work-hardening rate in the whisker composites. The overall dislocation densities were estimated to be somewhat higher in the whisker composites than the particulate composites, but in the early stages of deformation the distribution was rather different, with deformation in the whisker material being far more localized and inhomogeneous. This factor, together with differences in the internal stress distribution in the materials, is used to explain the difference in mechanical properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silicon is known to be a very good material for the realization of high-Q, low-volume photonic cavities, but at the same it is usually considered as a poor material for nonlinear optical functionalities like second-harmonic generation, because its second-order nonlinear susceptibility vanishes in the dipole approximation. In this work we demonstrate that nonlinear optical effects in silicon nanocavities can be strongly enhanced and even become macroscopically observable. We employ photonic crystal nanocavities in silicon membranes that are optimized simultaneously for high quality factor and efficient coupling to an incoming beam in the far field. Using a low-power, continuous-wave laser at telecommunication wavelengths as a pump beam, we demonstrate simultaneous generation of second- and third harmonics in the visible region, which can be observed with a simple camera. The results are in good agreement with a theoretical model that treats third-harmonic generation as a bulk effect in the cavity region, and second-harmonic generation as a surface effect arising from the vertical hole sidewalls. Optical bistability is also observed in the silicon nanocavities and its physical mechanisms (optical, due to two-photon generation of free carriers, as well as thermal) are investigated. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Confronted with high variety and low volume market demands, many companies, especially the Japanese electronics manufacturing companies, have reconfigured their conveyor assembly lines and adopted seru production systems. Seru production system is a new type of work-cell-based manufacturing system. A lot of successful practices and experience show that seru production system can gain considerable flexibility of job shop and high efficiency of conveyor assembly line. In implementing seru production, the multi-skilled worker is the most important precondition, and some issues about multi-skilled workers are central and foremost. In this paper, we investigate the training and assignment problem of workers when a conveyor assembly line is entirely reconfigured into several serus. We formulate a mathematical model with double objectives which aim to minimize the total training cost and to balance the total processing times among multi-skilled workers in each seru. To obtain the satisfied task-to-worker training plan and worker-to-seru assignment plan, a three-stage heuristic algorithm with nine steps is developed to solve this mathematical model. Then, several computational cases are taken and computed by MATLAB programming. The computation and analysis results validate the performances of the proposed mathematical model and heuristic algorithm. © 2013 Springer-Verlag London.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Routine assessment of dry weight in chronic hemodialysis patients relies primarily on clinical evaluation of patient fluid status. We evaluated whether measurement of postdialytic vascular refill could assist in the assessment of dry weight. METHODS: Twenty-eight chronic, stable hemodialysis patients were studied during routine treatment sessions using constant dialysate temperature and dialysate sodium concentration, and relative changes in blood volume were monitored using Crit-Line III monitors throughout this study. The study was divided into three phases. Phase 1 studies evaluated the time-dependence of vascular compartment refill after completion of hemodialysis. Phase 2 studies evaluated the relationships in patient subgroups between intradialytic changes in blood volume and the presence of postdialytic vascular compartment refill during that last 10 minutes of hemodialysis after stopping ultrafiltration. Phase 3 studies evaluated the extent of dry weight changes following the application of a protocol for blood volume reduction, postdialytic vascular compartment refill, and correlation with clinical evidence of intradialytic hypovolemia and/or postdialytic fatigue. Phase 3 included anywhere from three to five treatments. RESULTS: Phase 1 studies demonstrated that despite interpatient variability in the magnitude of postdialytic vascular compartment refill, when significant refill was evident, it always continued for at least 30 minutes. However, the majority of refill took place within 10 minutes postdialysis. Phase 2 studies identified 3 groups of patients: those who exhibited intradialytic reductions in blood volume but not postdialytic vascular compartment refill (group 1), those who exhibited intradialytic reductions in blood volume and postdialytic vascular compartment refill (group 2), and those whose blood volume did not change substantially during hemodialysis treatment (group 3). In phase 3 studies, use of an ultrafiltration protocol for blood volume reduction and monitoring of postdialytic vascular compartment refill combined with clinical assessment of hypovolemia and postdialytic fatigue demonstrated that patients often had a clinical dry weight assessment which was too low or too high. In all 28 patients studied, dry weight was either increased or decreased following use of this protocol. CONCLUSION: Determination of the extent of both intradialytic decreases in blood volume and postdialytic vascular compartment refill, combined with clinical assessment of intradialytic hypovolemia and postdialytic fatigue, can help assess patient dry weight and optimize volume status while reducing dialysis associated morbidity. The number of hospital admissions due to fluid overload may be reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to account for interfacial friction of composite materials, an analytical model based on contact geometry and local friction is proposed. A contact area includes several types of microcontacts depending on reinforcement materials and their shape. A proportion between these areas is defined by in-plane contact geometry. The model applied to a fibre-reinforced composite results in the dependence of friction on surface fibre fraction and local friction coefficients. To validate this analytical model, an experimental study on carbon fibrereinforced epoxy composites under low normal pressure was performed. The effects of fibre volume fraction and fibre orientation were studied, discussed and compared with analytical model results. © Springer Science+Business Media, LLC 2012.