11 resultados para Drug Costs

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article provides information on a study on the potential of mixing ventilation in reducing energy costs in buildings such as theaters and schools. The study found that neither Manchester’s Contact Theatre and the Garrick Theatre in Lichfield in England is operating according to the displacement-ventilation principle upon which they were designed. Hybrid mixing ventilation has an important impact on both the ventilation rate and the thermal comfort of the theatres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drive to reduce carbon emissions from domestic housing has led to a recent shift of focus from new-­‐build to retrofit. However there are two significant differences. Firstly more work is needed to retrofit existing housing to the same energy efficiency standards as new-­‐build. Secondly the remaining length of service life is potentially shorter. This implies that the capital expenditure – both financial and carbon -­‐ of retrofit may be disproportionate to the savings gained over the remaining life. However the Government’s definition of low and zero carbon continues to exclude the capital (embodied) carbon costs of construction, which has resulted in a lack of data for comparison. The paper addresses this gap by reporting the embodied carbon costs of retrofitting four individual pilot properties in Rampton Drift, part of an Eco-­‐Town Demonstrator Project in Cambridgeshire. Through collecting details of the materials used and their journeys from manufacturer to site, the paper conducts a ‘cradle-­‐to-­‐gate’ life cycle carbon assessment for each property. The embodied carbon figures are calculated using a software tool being developed by the Centre for Sustainable Development at the University of Cambridge. The key aims are to assess the real embodied carbon costs of retrofit of domestic properties, and to test the new tool; it is hoped that the methodology, the tool and the specific findings will be transferable to other projects. Initial changes in operational energy as a result of the retrofit works will be reported and compared with the embodied carbon costs when presenting this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space heating accounts for a large portion of the world's carbon dioxide emissions. Ground Source Heat Pumps (GSHPs) are a technology which can reduce carbon emissions from heating and cooling. GSHP system performance is however highly sensitive to deviation from design values of the actual annual energy extraction/rejection rates from/to the ground. In order to prevent failure and/or performance deterioration of GSHP systems it is possible to incorporate a safety factor in the design of the GSHP by over-sizing the ground heat exchanger (GHE). A methodology to evaluate the financial risk involved in over-sizing the GHE is proposed is this paper. A probability based approach is used to evaluate the economic feasibility of a hypothetical full-size GSHP system as compared to four alternative Heating Ventilation and Air Conditioning (HVAC) system configurations. The model of the GSHP system is developed in the TRNSYS energy simulation platform and calibrated with data from an actual hybrid GSHP system installed in the Department of Earth Science, University of Oxford, UK. Results of the analysis show that potential savings from a full-size GSHP system largely depend on projected HVAC system efficiencies and gas and electricity prices. Results of the risk analysis also suggest that a full-size GSHP with auxiliary back up is potentially the most economical system configuration. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Healthcare systems worldwide face a wide range of challenges, including demographic change, rising drug and medical technology costs, and persistent and widening health inequalities both within and between countries. Simultaneously, issues such as professional silos, static medical curricula, and perceptions of "information overload" have made it difficult for medical training and continued professional development (CPD) to adapt to the changing needs of healthcare professionals in increasingly patient-centered, collaborative, and/or remote delivery contexts. In response to these challenges, increasing numbers of medical education and CPD programs have adopted e-learning approaches, which have been shown to provide flexible, low-cost, user-centered, and easily updated learning. The effectiveness of e-learning varies from context to context, however, and has also been shown to make considerable demands on users' motivation and "digital literacy" and on providing institutions. Consequently, there is a need to evaluate the effectiveness of e-learning in healthcare as part of ongoing quality improvement efforts. This article outlines the key issues for developing successful models for analyzing e-health learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Healthcare systems worldwide face a wide range of challenges, including demographic change, rising drug and medical technology costs, and persistent and widening health inequalities both within and between countries. Simultaneously, issues such as professional silos, static medical curricula, and perceptions of "information overload" have made it difficult for medical training and continued professional development (CPD) to adapt to the changing needs of healthcare professionals in increasingly patient-centered, collaborative, and/or remote delivery contexts. In response to these challenges, increasing numbers of medical education and CPD programs have adopted e-learning approaches, which have been shown to provide flexible, low-cost, user-centered, and easily updated learning. The effectiveness of e-learning varies from context to context, however, and has also been shown to make considerable demands on users' motivation and "digital literacy" and on providing institutions. Consequently, there is a need to evaluate the effectiveness of e-learning in healthcare as part of ongoing quality improvement efforts. This article outlines the key issues for developing successful models for analyzing e-health learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable polymers can be applied to a variety of implants for controlled and local drug delivery. The aim of this study is to develop a biodegradable and nanoporous polymeric platform for a wide spectrum of drug-eluting implants with special focus on stent-coating applications. It was synthesized by poly(DL-lactide-co-glycolide) (PLGA 65:35, PLGA 75:25) and polycaprolactone (PCL) in a multilayer configuration by means of a spin-coating technique. The antiplatelet drug dipyridamole was loaded into the surface nanopores of the platform. Surface characterization was made by atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). Platelet adhesion and drug-release kinetic studies were then carried out. The study revealed that the multilayer films are highly nanoporous, whereas the single layers of PLGA are atomically smooth and spherulites are formed in PCL. Their nanoporosity (pore diameter, depth, density, surface roughness) can be tailored by tuning the growth parameters (eg, spinning speed, polymer concentration), essential for drug-delivery performance. The origin of pore formation may be attributed to the phase separation of polymer blends via the spinodal decomposition mechanism. SE studies revealed the structural characteristics, film thickness, and optical properties even of the single layers in the triple-layer construct, providing substantial information for drug loading and complement AFM findings. Platelet adhesion studies showed that the dipyridamole-loaded coatings inhibit platelet aggregation that is a prerequisite for clotting. Finally, the films exhibited sustained release profiles of dipyridamole over 70 days. These results indicate that the current multilayer phase therapeutic approach constitutes an effective drug-delivery platform for drug-eluting implants and especially for cardiovascular stent applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the development of a drug-loaded triple-layer platform consisting of thin film biodegradable polymers, in a properly designed form for the desired gradual degradation. Poly(dl-lactide-co-glycolide) (PLGA (65:35), PLGA (75:25)) and polycaprolactone (PCL) were grown by spin coating technique, to synthesize the platforms with the order PCL/PLGA (75:25)/PLGA (65:35) that determine their degradation rates. The outer PLGA (65:35) layer was loaded with dipyridamole, an antiplatelet drug. Spectroscopic ellipsometry (SE) in the Vis-far UV range was used to determine the nanostructure, as well as the content of the incorporated drug in the as-grown platforms. In situ and real-time SE measurements were carried out using a liquid cell for the dynamic evaluation of the fibrinogen and albumin protein adsorption processes. Atomic force microscopy studies justified the SE results concerning the nanopores formation in the polymeric platforms, and the dominant adsorption mechanisms of the proteins, which were defined by the drug incorporation in the platforms. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new approach for fabricating hollow microneedles using vertically-aligned carbon nanotubes (VA-CNTs) for rapid transdermal drug delivery. Here, we discuss the fabrication of the microneedles emphasizing the overall simplicity and flexibility of the method to allow for potential industrial application. By capitalizing on the nanoporosity of the CNT bundles, uncured polymer can be wicked into the needles ultimately creating a high strength composite of aligned nanotubes and polymer. Flow through the microneedles as well as in vitro penetration of the microneedles into swine skin is demonstrated. Furthermore, we present a trade study comparing the difficulty and complexity of the fabrication process of our CNT-polymer microneedles with other standard microneedle fabrication approaches. Copyright © Materials Research Society 2013.