5 resultados para Computer algorithms

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tracking applications provide real time on-site information that can be used to detect travel path conflicts, calculate crew productivity and eliminate unnecessary processes at the site. This paper presents the validation of a novel vision based tracking methodology at the Egnatia Odos Motorway in Thessaloniki, Greece. Egnatia Odos is a motorway that connects Turkey with Italy through Greece. Its multiple open construction sites serves as an ideal multi-site test bed for validating construction site tracking methods. The vision based tracking methodology uses video cameras and computer algorithms to calculate the 3D position of project related entities (e.g. personnel, materials and equipment) in construction sites. The approach provides an unobtrusive, inexpensive way of effectively identifying and tracking the 3D location of entities. The process followed in this study starts by acquiring video data from multiple synchronous cameras at several large scale project sites of Egnatia Odos, such as tunnels, interchanges and bridges under construction. Subsequent steps include the evaluation of the collected data and finally, performing the 3D tracking operations on selected entities (heavy equipment and personnel). The accuracy and precision of the method's results is evaluated by comparing it with the actual 3D position of the object, thus assessing the 3D tracking method's effectiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variable selection for regression is a classical statistical problem, motivated by concerns that too large a number of covariates may bring about overfitting and unnecessarily high measurement costs. Novel difficulties arise in streaming contexts, where the correlation structure of the process may be drifting, in which case it must be constantly tracked so that selections may be revised accordingly. A particularly interesting phenomenon is that non-selected covariates become missing variables, inducing bias on subsequent decisions. This raises an intricate exploration-exploitation tradeoff, whose dependence on the covariance tracking algorithm and the choice of variable selection scheme is too complex to be dealt with analytically. We hence capitalise on the strength of simulations to explore this problem, taking the opportunity to tackle the difficult task of simulating dynamic correlation structures. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we describe models and algorithms for detection and tracking of group and individual targets. We develop two novel group dynamical models, within a continuous time setting, that aim to mimic behavioural properties of groups. We also describe two possible ways of modeling interactions between closely using Markov Random Field (MRF) and repulsive forces. These can be combined together with a group structure transition model to create realistic evolving group models. We use a Markov Chain Monte Carlo (MCMC)-Particles Algorithm to perform sequential inference. Computer simulations demonstrate the ability of the algorithm to detect and track targets within groups, as well as infer the correct group structure over time. ©2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a method of rapidly producing computer-generated holograms that exhibit geometric occlusion in the reconstructed image. Conceptually, a bundle of rays is shot from every hologram sample into the object volume.We use z buffering to find the nearest intersecting object point for every ray and add its complex field contribution to the corresponding hologram sample. Each hologram sample belongs to an independent operation, allowing us to exploit the parallel computing capability of modern programmable graphics processing units (GPUs). Unlike algorithms that use points or planar segments as the basis for constructing the hologram, our algorithm's complexity is dependent on fixed system parameters, such as the number of ray-casting operations, and can therefore handle complicated models more efficiently. The finite number of hologram pixels is, in effect, a windowing function, and from analyzing the Wigner distribution function of windowed free-space transfer function we find an upper limit on the cone angle of the ray bundle. Experimentally, we found that an angular sampling distance of 0:01' for a 2:66' cone angle produces acceptable reconstruction quality. © 2009 Optical Society of America.