3 resultados para Biomedicine

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universities currently need to satisfy the demands of different audiences. In light of the increasing policy emphasis on "third mission" activities, universities are attempting to incorporate these into their traditional missions of teaching and research. University strategies to accomplishing its traditional missions are well-honed and routinized, but the incorporation of the third mission is posing important strategic and managerial challenges for universities. This study explores the relationship between university-business collaborations and academic excellence in order to examine the extent to which academic institutions can balance these objectives. Based on data from the UK Research Assessment Exercise 2001 at the level of the university department, we find no systematic positive or negative relationship between scientific excellence and engagement with industry. Across the disciplinary fields reported in the 2001 Research Assessment Exercise (i. e. engineering, hard sciences, biomedicine, social sciences and the humanities) the relationship between academic excellence and engagement with business is largely contingent on the institutional context of the university department. This paper adds to the growing body of literature on university engagement with business by examining this activity for the social sciences and the humanities. Our findings have important implications for the strategic management of university departments and for higher education policy related to measuring the performance of higher education research institutions. © 2013 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: An exciting direction in nanomedicine would be to analyze how living cells respond to conducting polymers. Their application for tissue regeneration may advance the performance of drug eluting stents by addressing the delayed stent re-endothelialization and late stent thrombosis. METHODS: The suitability of poly (3, 4-ethylenedioxythiophene) (PEDOT) thin films for stents to promote cell adhesion and proliferation is tested in correlation with doping and physicochemical properties. PEDOT doped either with poly (styrenesulfonate) (PSS) or tosylate anion (TOS) was used for films' fabrication by spin coating and vapor phase polymerization respectively. PEGylation of PEDOT: TOS for reduced immunogenicity and biofunctionalization of PEDOT: PSS with RGD peptides for induced cell proliferation was further applied. Atomic Force Microscopy and Spectroscopic Ellipsometry were implemented for nanotopographical, structural, optical and conductivity measurements in parallel with wettability and protein adsorption studies. Direct and extract testing of cell viability and proliferation of L929 fibroblasts on PEDOT samples by MTT assay in line with SEM studies follow. RESULTS: All PEDOT thin films are cytocompatible and promote human serum albumin adsorption. PEDOT:TOS films were found superior regarding cell adhesion as compared to controls. Their nanotopography and hydrophilicity are significant factors that influence cytocompatibility. PEGylation of PEDOT:TOS increases their conductivity and hydrophilicity with similar results on cell viability with bare PEDOT:TOS. The biofunctionalized PEDOT:PSS thin films show enhanced cell proliferation. CONCLUSIONS: The application of PEDOT polymers has evolved as a new perspective to advance stents. GENERAL SIGNIFICANCE: In this work, nanomedicine involving nanotools and novel nanomaterials merges with bioelectronics to stimulate tissue regeneration for cardiovascular implants. This article is part of a Special Issue entitled Organic Bioelectronics - Novel Applications in Biomedicine.