134 resultados para Decay resistance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current models of motor learning posit that skill acquisition involves both the formation and decay of multiple motor memories that can be engaged in different contexts. Memory formation is assumed to be context dependent, so that errors most strongly update motor memories associated with the current context. In contrast, memory decay is assumed to be context independent, so that movement in any context leads to uniform decay across all contexts. We demonstrate that for both object manipulation and force-field adaptation, contrary to previous models, memory decay is highly context dependent. We show that the decay of memory associated with a given context is greatest for movements made in that context, with more distant contexts showing markedly reduced decay. Thus, both memory formation and decay are strongest for the current context. We propose that this apparently paradoxical organization provides a mechanism for optimizing performance. While memory decay tends to reduce force output, memory formation can correct for any errors that arise, allowing the motor system to regulate force output so as to both minimize errors and avoid unnecessary energy expenditure. The motor commands for any given context thus result from a balance between memory formation and decay, while memories for other contexts are preserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the difficulties in model testing deepwater structures at reasonable scales. An overview of recent research efforts to tackle this challenge is given first, introducing the concept of line truncation. Passive truncation has traditionally been the preferred method by industry; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. Vibration decay of transverse elastic waves due to fluid drag forces is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Initially a simplified taut string model is assumed for which the line is submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a general guideline for the truncation length criterion, which is suitable for any kind of line with any top motion. The focus of this paper is to extend this work to a more complex line configuration of a conventional deepwater mooring line and so enhance the generality of the truncation guideline. The paper will close with an example case study of a spread mooring system, applying this method to create an equivalent numerical model at a reduced depth that replicates exactly the static and dynamic characteristics of the full depth system. Copyright © 2012 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the vibration dynamics of a closed-chain, cross-coupled architecture of MEMS resonators. The system presented here is electrostatically transduced and operates at 1.04 MHz. Curve veering of the eigenvalue loci is used to experimentally quantify the coupling spring constants. Numerical simulations of the motional resistance variation against induced perturbation are used to assess the robustness of the cross-coupled system as opposed to equivalent traditional open-ended linear one-dimensional coupling scheme. Results show improvements of as much as 32% in the motional resistance between the cross-coupled system and its one-dimensional counterpart. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research work focused on the determination of guidelines for the production of an UHPFRCC, and the experimental investigation of the quality and the behaviour of this material in a highly demanding application, such as the impact resistance of structures. Specifically, the aim of this study is to present the results of an extended work on the development of an UHPFRCC and the experimental determination of the mechanical properties of the produced material. Furthermore, the paper will present preliminary experimental results on the impact resistance of Reinforced Concrete and UHPFRCC slab specimens. © 2012 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classification of a concrete mixture as self-compacting (SCC) is performed by a series of empirical characterization tests that have been designed to assess not only the flowability of the mixture but also its segregation resistance and filling ability. The objective of the present work is to correlate the rheological parameters of SCC matrix, yield stress and plastic viscosity, to slump flow measurements. The focus of the slump flow test investigation was centered on the fully yielded flow regime and an empirical model relating the yield stress to material and flow parameters is proposed. Our experimental data revealed that the time for a spread of 500 mm which is used in engineering practice as reference for measurement parameters, is an arbitrary choice. Our findings indicate that the non-dimensional final spread is linearly related to the non-dimensional yield-stress. Finally, there are strong indications that the non-dimensional viscosity of the mixture is associated with the non-dimensional final spread as well as the stopping time of the slump flow; this experimental data set suggests an exponential decay of the final spread and stopping time with viscosity. © Appl. Rheol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a numerical study of the impact of process-induced variations on the achievable motional resistance Rx of one-dimensional, cyclic and cross-coupled architectures of electrostatically transduced MEMS resonators operating in the 250 kHz range. Monte Carlo numerical simulations which accounted for up to 0.75% variation in critical resonator feature sizes were initiated on 1, 2, 3, 4, 5 and 9 coupled MEMS resonators for three distinct coupling architectures. Improvements of 100X in the spread of Rx and 2.7X in mean achievable Rx are reported for the case of 9 resonators when implemented in the cross-coupled topology, as opposed to the traditional one-dimensional chain. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aligned carbon nanotube (CNT) polymer composites are envisioned as the next-generation composite materials for a wide range of applications. In this work, we investigate the erosive wear behavior of epoxy matrix composites reinforced with both randomly dispersed and aligned carbon nanotube (CNT) arrays. The aligned CNT composites are prepared in two different configurations, where the sidewalls and ends of nanotubes are exposed to the composite surface. Results have shown that the composite with vertically aligned CNT-arrays exhibits superior erosive wear resistance compared to any of the other types of composites, and the erosion rate reaches a similar performance level to that of carbon steel at 20° impingement angle. The erosive wear mechanism of this type of composite, at various impingement angles, is studied by Scanning Electron Microscopy (SEM). We report that the erosive wear performance shows strong dependence on the alignment geometries of CNTs within the epoxy matrix under identical nanotube loading fractions. Correlations between the eroded surface roughness and the erosion rates of the CNT composites are studied by surface profilometry. This work demonstrates methods to fabricate CNT based polymer composites with high loading fractions of the filler, alignment control of nanotubes and optimized erosive wear properties. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spallation resistance of an air plasma sprayed (APS) thermal barrier coating (TBC) to cool-down/reheat is evaluated for a pre-existing delamination crack. The delamination emanates from a vertical crack through the coating and resides at the interface between coating and underlying thermally grown oxide layer (TGO). The coating progressively sinters during engine operation, and this leads to a depth-dependent increase in modulus. Following high temperature exposure, the coating is subjected to a cooling/reheating cycle representative of engine shut-down and start-up. The interfacial stress intensity factors are calculated for the delamination crack over this thermal cycle and are compared with the mode-dependent fracture toughness of the interface between sintered APS and TGO. The study reveals the role played by microstructural evolution during sintering in dictating the spallation life of the thermal barrier coating, and also describes a test method for the measurement of delamination toughness of a thin coating. © 2014 Elsevier Ltd.