33 resultados para DRAINAGE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibration is commonly used in civil engineering applications to efficiently compact aggregates. This study examined the effect of vibration and drainage on bone graft compaction and cement penetration in an in vitro femoral impaction bone grafting model with the use of 3-dimensional micro-computed tomographic imaging. Three regions were analyzed. In the middle and proximal femoral regions, there was a significant increase in the proportion of bone grafts with a reciprocal reduction in water and air in the vibration-assisted group (P < .01) as compared with the control group, suggesting tighter graft compaction. Cement volume was also significantly reduced in the middle region in the vibration-assisted group. No difference was observed in the distal region. This study demonstrates the value of vibration and drainage in bone graft compaction, with implications therein for clinical application and outcome.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analytical solution is presented for the vertical consolidation of a cylindrical annulus of clay with horizontal drainage occurring to concentric internal and external drainage boundaries. Numerical results are given for various ratios of internal and external radii and it is shown that solutions for conventional one-dimensional consolidation, and for consolidation of a cylindrical block of clay with drainage only to the outer cylindrical boundary form extremes to the analysis presented here. An application of the solution to the estimation of horizontal permeability of clay is briefly described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following a tunnel excavation in low-permeability soil, it is commonly observed that the ground surface continues to settle and ground loading on the tunnel lining changes, as the pore pressures in the ground approach a new equilibrium condition. The monitored ground response following the tunnelling under St James's Park, London, shows that the mechanism of subsurface deformation is composed of three different zones: swelling, consolidation and rigid body movement. The swelling took place in a confined zone above the tunnel crown, extending vertically to approximately 5 m above it. On the sides of the tunnel, the consolidation of the soil occurred in the zone primarily within the tunnel horizon, from the shoulder to just beneath the invert, and extending laterally to a large offset from the tunnel centreline. Above these swelling and consolidation zones the soil moved downward as a rigid body. In this study, soil-fluid coupled three-dimensional finite element analyses were performed to simulate the mechanism of long-term ground response monitored at St James's Park. An advanced critical state soil model, which can simulate the behaviour of London Clay in both drained and undrained conditions, was adopted for the analyses. The analysis results are discussed and compared with the field monitoring data. It is found that the observed mechanism of long-term subsurface ground and tunnel lining response at St James's Park can be simulated accurately only when stiffness anisotropy, the variation of permeability between different units within the London Clay and non-uniform drainage conditions for the tunnel lining are considered. This has important implications for future prediction of the long-term behaviour of tunnels in clays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the application of Advanced Process Control (APC) techniques for improving the thermal energy efficiency of a paperboard-making process by regulating the Machine Direction (MD) profile of the basis weight and moisture content of the paper-board. A Model Predictive Controller (MPC) is designed so that the sheet moisture and basis weight tracking errors along with variations of the sheet moisture and basis weight are reduced. Also, the drainage is maximised through improved wet-end stability which can facilitate driving the sheet moisture set-point closer to its upper specification limit over time. It is shown that the proposed strategy can result in reducing steam usage by 8-10%. A simulation study based on a UK board machine is presented to show the effectiveness of the proposed technique. © 2011 Intl Journal of Adv Mechatr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last two or three years, the increasing costs of energy and worsening market conditions have focussed even greater attention within paper mills than before, on considering ways to improve efficiency and reduce the energy used in paper making. Arising from a multivariable understanding of paper machine operation, Advanced Process Control (APC) technology enables paper machine behaviour to be controlled in a more coherent way, using all the variables available for control. Furthermore, with the machine under better regulation and with more variables used in control, there is the opportunity to optimise machine operation, usually providing very striking multi-objective performance improvement benefits of a number of kinds. Traditional three term control technology does not offer this capability. The paper presents results from several different paper machine projects we have undertaken around the world. These projects have been aimed at improving machine stability, optimising chemicals usage and reducing energy use. On a brown paperboard machine in Australasia, APC has reduced specific steam usage by 10%, averaged across the grades; the controller has also provided a significant capacity to increase production. On a North American newsprint machine, the APC system has reduced steam usage by more than 10%, and it provides better control of colour and much improved wet end stability. The paper also outlines early results from two other performance improvement projects, each incorporating a different approach to reducing the energy used in paper making. The first of these two projects is focussed on optimising sheet drainage, aiming to present the dryer with a sheet having higher solids content than before. The second project aims to reduce specific steam usage by optimising the operation of the dryer hood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil liquefaction following large earthquakes is a major contributor to damage to infrastructure and economic loss, as borne out by the earthquakes in Japan and New Zealand in 2011. While extensive research has been conducted on soil liquefaction and our understanding of liquefaction has been advancing, several uncertainties remain. In this paper the basic premise that liquefaction is an 'undrained' event will be challenged. Evidence will be offered based on dynamic centrifuge tests to show that rapid settlements occur both in level ground and for shallow foundations. It will also be shown that the definition of liquefaction based on excess pore pressure generation and the subsequent classification of sites as liquefiable and non-liquefiable is not satisfactory, as centrifuge test data shows that both loose and dense sand sites produce significant excess pore pressure. Experimental evidence will be presented that shows that the permeability of sands increases rapidly at very low effective stresses to allow for rapid drainage to take place from liquefied soil. Based on these observations a micro-mechanical view of soil liquefaction that brings together the Critical State view of soil liquefaction and the importance of dynamic loading will be presented. © 2012 Indian Geotechnical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers how the provision of integrated household-level infrastructure – particularly water and environmental sanitation (including water supply, sewerage, roads, storm drainage and solid waste management) –can play a leading role in improving the conditions in slum settlements. Around 700 socio-economic interviews were carried out in India and South Africa to investigate an innovative approach called slum networking, which sees the strong correlation between slum locations and drainage paths as an opportunity for improving the wider urban environment. This recognition allows resources to be mobilised locally, thereby removing the need for external aid funding. The evidence from the 700 families shows that communities perceive water and sanitation inputs to be their top priority and are willing to contribute to the costs. If slum upgrading is led with access to integrated water and environmental sanitation at household level with community contributions to the cost of infrastructure, then slum communities subsequently invest considerably greater sums in improved housing and education, with longer term contributions to poverty alleviation, improvements in health and literacy and an increase in disposable incomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prediction of the long-term settlement of clay soils over tunnels requires a knowledge of the permeability of the soil and of the tunnel lining; however, determination of the lining permeability in the field is difficult. An important contributor to this problem is the lack of knowledge concerning the permeability of the grout between the lining and the soil. This paper presents the results of tests to characterise the properties of grout samples from London Underground tunnels, investigating permeability, porosity, micro structure and composition. The tests revealed that the newer grout was impermeable relative to the surrounding clay. However, the older samples showed much greater permeabilities and an altered grout composition, suggesting that degradation had taken place. Exposure to groundwater appeared to have caused carbonation and sulfate reaction. The combination of chemical reaction and leaching of cementitious and degradation products appears to have made these grouts more permeable, so that the grout could act as a drainage path rather than a barrier. This challenges the typical assumption that the grout acts as an impermeable barrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground improvement techniques can be adopted to prevent existing buildings built on liquefiable soils sustaining damage in future earthquakes. Impermeable geomembrane containment walls may be an economic and successful technique but their design and performance are currently not well defined or well understood for this application. This paper describes centrifuge testing carried out to investigate the performance of such containment walls as a liquefaction remediation method for a single degree of freedom frame structure. The results were compared with those from similar centrifuge testing carried out with the same structure founded on unimproved sand, to assess the effectiveness of the remediation method. It was found that the geomembrane containment walls tested were effective at reducing structural settlement and did not significantly increase the accelerations transmitted to the structure. Structural settlements were reduced primarily by mobilising hoop stress and preventing lateral soil movement. By preventing surface drainage, a decrease in the volume change of the foundation sand was also observed. In addition, the impermeability of the walls may be important as this prevented rapid migration of pore water fromthe free field to the foundation region.