2 resultados para poultry by products

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe a one-step bio-refinery process for shrimp composites by-products. Its originality lies in a simple rapid (6 h) biotechnological cuticle fragmentation process that recovers all major compounds (chitins, peptides and minerals in particular calcium). The process consists of a controlled exogenous enzymatic proteolysis in a food-grade acidic medium allowing chitin purification (solid phase), and recovery of peptides and minerals (liquid phase). At a pH of between 3.5 and 4, protease activity is effective, and peptides are preserved. Solid phase demineralization kinetics were followed for phosphoric, hydrochloric, acetic, formic and citric acids with pKa ranging from 2.1 to 4.76. Formic acid met the initial aim of (i) 99 % of demineralization yield and (ii) 95 % deproteinization yield at a pH close to 3.5 and a molar ratio of 1.5. The proposed one-step process is proven to be efficient. To formalize the necessary elements for the future optimization of the process, two models to predict shell demineralization kinetics were studied, one based on simplified physical considerations and a second empirical one. The first model did not accurately describe the kinetics for times exceeding 30 minutes, the empirical one performed adequately.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Harmful algal blooms of Alexandrium spp. dinoflagellates regularly occur in French coastal waters contaminating shellfish. Studies have demonstrated that toxic Alexandrium spp. disrupt behavioural and physiological processes in marine filter-feeders, but molecular modifications triggered by phycotoxins are less well understood. This study analyzed the mRNA levels of 7 genes encoding antioxidant/detoxifying enzymes in gills of Pacific oysters (Crassostrea gigas) exposed to a cultured, toxic strain of A. minutum, a producer of paralytic shellfish toxins (PST) or fed Tisochrysis lutea (T. lutea, formerly Isochrysis sp., clone Tahitian (T. iso)), a non-toxic control diet, in four repeated experiments. Transcript levels of sigma-class glutathione S-transferase (GST), glutathione reductase (GR) and ferritin (Fer) were significantly higher in oysters exposed to A. minutum compared to oysters fed T. lutea. The detoxification pathway based upon glutathione (GSH)-conjugation of toxic compounds (phase II) is likely activated, and catalyzed by GST. This system appeared to be activated in gills probably for the detoxification of PST and/or extra-cellular compounds, produced by A. minutum. GST, GR and Fer can also contribute to antioxidant functions to prevent cellular damage from increased reactive oxygen species (ROS) originating either from A. minutum cells directly, from oyster hemocytes during immune response, or from other gill cells as by-products of detoxification.