2 resultados para organometallic compound

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the relative contribution of natural productivity and compound food to the growth of the juvenile blue shrimp Litopenaeus stylirostris reared in a biofloc system. Two experiments were carried out based on the same protocol with three treatments: clear water with experimental diet (CW), biofloc with experimental diet (BF) and biofloc unfed (BU). Shrimp survival was significantly higher in biofloc rearing than in CW rearing. The contribution of the biofloc to shrimp diet was estimated through measurement of carbon and nitrogen stable isotope ratios in shrimp and food sources. Different isotopic compositions between feeds were obtained by feeding natural productivity with a mixture rich in fish meal and the shrimps with a pellet containing a high level of soy protein concentrate. Using a two source one-isotope mixing model, we found that the natural productivity of the biofloc system contributed to shrimp growth at a level of 39.8% and 36.9%, for C and N, respectively. The natural food consumed by the shrimps reared in the biofloc system resulted in higher gene expression (mRNA transcript abundance) and activities of two digestive enzymes in their digestive gland: α-amylase and trypsin. The growth of shrimp biomass reared in biofloc was, on average, 4.4 times that of those grown in clear water. Our results confirmed the best survival and promoted growth of shrimps using biofloc technology and highlighted the key role of the biofloc in the nutrition of rearing shrimps. Statement of relevance In this study, we have applied an original protocol to determine the respective contribution of natural productivity and artificial feeds on the alimentation of the juvenile blue shrimp L. stylirostris reared in biofloc system by using C and N natural stable isotope analysis. Moreover, we have compared, in shrimp digestive gland, the α-amylase and trypsin enzyme activities at biochemical and molecular levels for two different shrimp rearing systems, biofloc and clear water. In our knowledge, the use of molecular tool to study the influence of biofloc consumption on digest process of shrimp was never carried out. We think that our research is new and important to increase knowledge on biofloc topic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alginate microgels are widely used as delivery systems in food, cosmetics, and pharmaceutical industries for encapsulation and sustained release of hydrophilic compounds and cells. However, the encapsulation of lipophilic molecules inside these microgels remains a great challenge because of the complex oil-core matrix required. The present study describes an original two-step approach allowing the easy encapsulation of several oil microdroplets within alginate microgels. In the first step, stable oil microdroplets were formed by preparing an oil-in-water (O/W) Pickering emulsion. To stabilize this emulsion, we used two solid particles, namely the cotton cellulose nanocrystals (CNC) and calcium carbonate (CaCO3). It was observed that the surface of the oil microdroplets formed was totally covered by a CNC layer, whereas CaCO3 particles were adsorbed onto the cellulose layer. This solid CNC shell efficiently stabilized the oil microdroplets, preventing them from undesired coalescence. In the second step, oil microdroplets resulting from the Pickering emulsion were encapsulated within alginate microgels using microfluidics. Precisely, the outermost layer of oil microdroplets composed of CaCO3 particles was used to initiate alginate gelation inside the microfluidic device, following the internal gelation mode. The released Ca2+ ions induced the gel formation through physical cross-linking with alginate molecules. This innovative and easy to carry out two-step approach was successfully developed to fabricate monodisperse alginate microgels of 85 pm in diameter containing around 12 oil microdroplets of 15 mu m in diameter. These new oil-core alginate microgels represent an attractive system for encapsulation of lipophilic compounds such as vitamins, aroma compounds or anticancer drugs that could be applied in various domains including food, cosmetics, and medical applications.