9 resultados para ras

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Document contains 4 pages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONTENTS: Efforts of a farmer in fish seed production for self-employment, by Ras Behari Baraik and Ashish Kumar. Remembering: the missing capacity, by Terrence Clayton. Measuring the process, by Nick Innes-Taylor. Women’s fish farmers group in Nawalparasi, Nepal, by S.K. Pradhan. Periphyton-based aquaculture: a sustainable technology for resource-poor farmers, by M.E. Azim, M.A. Wahab, M.C.J. Verdegem, A.A. van Dam and M.C.M. Beveridge. Unlocking information on the Internet: STREAM media monitoring and issue tracking, by Paul Bulcock (PDF has 16 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This document is in Spanish. El Anuario Estadístico de Pesca 1981, resume la información estadística relativa al sector pesquero nacional elaborada tanto por la Secretarfa de Pesca como por otras entidades de la administración pliblica, como son: Productos Pesqueros Mexi canos, S.A, de C,V., Industr ras Pesqueras Para estatales del Noroeste, Banco Nacional Pesquero y Portuario, S.A., Secretaría de Hacienda y Crédito Público, Secretaríade Programación y Presupuesto y Secretaria de Educación Pública. Asimismo incluye información proporcionada por la Organización de las Naciones Unidas para la Agricultura y la Al imentación (FAO). El Anuario consta de 12 capitulos que cubren los temas de: capturas, permisos, población, embarcaciones, artes y equipos de pesca, industrial izaci8n, comercial ización, consumo, origen y destino de los productos pesqueros, capacitación, financiamiento e información internacional. Catch statistics for Mexican waters 1981. (PDF has 772 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The configuration for the eastern side of the Gulf of Suez was studied over 241 km from Ras Mohammed to Ras Sudr including 35 station. Litters, tar balls and aged oil patches aggregated in considerable amounts on the beach and shore line of the middle part due to the oil spills from off-shore oil wells. A large reef flat in the shallow intertidal waters exists at stations 1 and 2 (Ras Mohammed, Protected area) and spars coral patches are less frequent at the Stations from 7 to 13. Density and diversity of marine benthos were higher on hard and cobble bottoms compared to muddy sand and sandy substrates. The assemblages of the benthic fauna are dominated by the gastropod Courmya (Thericium) vulgata; the bivalve Brachiodontes variabilis, and the barnacles Chthamalus stellatus, Balanus amphitrite and Tetraclita rubescens. The distribution of the algal cover in the intertidal region shows high abundance of the brown algae, Sargassum latifolium; padina pavonica and Cystoseira trinodis rather than the green and red algae. These species are found in both polluted and unpolluted areas. The changes in benthic structures in the study area depend not only on the state of pollution but also on the type of substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coastal development and human activities along the Suez Gulf leading to sedimentation, degrade the quality of water, disturbing the natural structure and functions of aquatic communities. The Suez Gulf is a large semi-closed area with a 346 km long coastline on the western beach side. The prevailing physicochemical parameters in shallow intertidal waters were measured seasonally over the year. Benthic faunas in the sampling sites were studied indicating their regional distribution in relation to the impact of different environmental parameters in the intertidal region. The concentration of copper in seawater reached high level at St. IV (4.57 ug/1), which is exposed to sewage and petroleum hydrocarbons. The grain size of the sediment is a determining factor for the organic carbon concentration and the sandy substrate enhances organic matter degradation processes. A large number of oil fields are present along the western coast of the Suez Gulf, therefore, cadmium and organic matter appeared to be high. The values of pH did not vary greatly among the different sampling sites. It was high at EI-Ein, El-Sukhna and Ras-Shukeir due to the disposal of mainly acidic sewage and industrial effluents of the two stations Adabiya and Ras-Gharib respectively. The macrobenthos included 71 species embraced mainly from Mollusca (53.5% Gastropoda and 12.7% Bivalvia) and the other invertebrates included 7 groups namely, Rhizostoma, Polychaeta, Cirripedia, Amphipoda, Isopoda, Decapoda and Echinodermata. The distribution of benthos is affected by the temperature and salinity of seawater. The concentration of organic matter in seawater and in sediments in shallow waters shows high values in the central part of the Gulf of Suez.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increases in coastal development and human activities leading to sedimentation degrade the quality of water; disturb the natural structure and functions of aquatic communities. The Suez Gulf is a large semi-closed area (~625 km long coastline).The assemblages of bottom fauna were studied qualitatively and quantitatively in the shallow intertidal waters along the western coast of the Suez Gulf. The quality of seawater and sediment structures were analyzed. The distribution of macro-benthos included a total of 38 species of Gastropoda and 9 Bivalvia; and 25 species from the other invertebrates included 7 groups namely, Rhizostoma, Polychaeta, Cirripedia, Amphipoda, Isopoda, Decapoda and Echinodermata. The most dominant group among invertebrate groups was the Polychaeta which included 4 species: Hydroides elegans, Perinereis cultilifera, Perinereis nuntia and Ophelina acuminata. The Cirripedia were represented by 3 species namely, Balanus amphitrite, Chithamalus challengeri and Tetraclita squamosa. The variations in the numerical abundance and biomass of bottom fauna studied between the observation periods and at sampling sites. There was a marked increase in benthos biomass at St. IV (Ras Gharib) yielding an average of 318.8 g/m² in which the gastropod community represented the dominant species in collected samples reaching 270.28 g/m² (84.4% of the total biomass) and numerically numbered 116 ind./m². Veliger larvae of bivalves and gastropods appeared to be present in the plankton for long periods and their production seems to be continuous throughout the year. In the intertidal zone of the Suez Gulf, the values of pH varied within narrow limits. Water temperature and salinity seemed to be important in the distribution and abundance of the macro-benthos communities in the study areas. The organic content in shallow intertidal waters and sediments indicated high values in the central part of the Gulf of Suez.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bream (Abramis brava orientalis) is one of Cyprindae the Caspian Sea and its basin which has a special ecological, biological and economical role. Stock of this fish in the Caspian Sea has reduced during several years for different reason the over fishing, different industrial, agriculture, urban pollution and destroy of the spawning habitat. So that fishery company decided to recover the stock of this fish by the way of artificial reproduction of a Bream couple hunted from south coast of the Caspian Sea (Iran) and setting the fingerling to the rivers and inflow wetlands of the Caspian Sea.This activity has due to 20 tons Bream annual fishing in the Iranian South coast of the Caspian Sea (Gilan province coast and Anzali wetland), The artificial reproduction has decreased Bream population diversity of Caspian sea and Anzali wetland.So it has been declined to improve Braem population diversity by the entrance of Azerbijan republic Bream and encounter to the Caspian sea Bream. Meanwhile there is Bream in the Aras Dam Lake which had been forgotten by the Fishery Company of Iran .For this reason specifications morphometric, meristic and inter species Molecular Genetic have been surveyed in Anzali wetland,Southern coast of Caspian Sea ,Aras Darn Lake and Azerbijan republic during 2003-2005. According to the research on specifications of Morphometric and Meristic of Anzali wetland(120 species),Southern coast of Caspian Sea(90 species), Aras Dam Lake(110 species) and Azerbijan Republic(125 species)has Morphometric and Meristic differences. So that average weight and total length of Anzali wetland Bream respectively was 167 g and 23/76 cm, 102 g and 27/62 cm in Caspian Sea , 461 g and 3 5/38 cm in Aras Darn Lake and 3 4189 g and 15/21 cm in Azerbijan republic (We forced to use 1 year Bream of artificial reproduction in Iran). Also variation coefficient average Morphometric, Morphometric specification Ration and meristic in Anzali wetland Bream was 17/45, 21/56 and 4/63, in Caspian Sea bream 22/58, 15/27 and 3124, in Aras Dam lake Lake 17145. 1.5/27 and 3/57 and Azerbaijan republic Bream 22/29, 19/66 and 4/22. Also Bream of these four regions in general status had Morphometric significant differences based on One Way ANOVA Analysis. Meanwhile Anzali wetland Bream with Caspian Sea Bream from 41 Morphometric surveyed factors in 33 factors, with Aras Darn Lake Bream in 41 factors, with Azerbkjan republic Bream in 41 factors,Caspian Sea Bream with Aras Darn Lake Bream in 36 factors,with Azerbijan republic B ream in 40 factors and A ras Dam L ake Bream with Azerbijan republic Bream in 38 factors had significant statistical differences. These four regions Bream had differences according to the Morphomertric specification ration based on One Way ANOVA Analysis. Also Anzali wetland Bream was surveyed with Caspian Sea Bream from 37 factors i n 27 factors, Anzali wetland Bream with Aras Dam 1ake in 37 factors Anzali wetland Bream with Azerbijan republic Bream in 32 factors,Caspian sea bream with Arsa Dam Lake Bream in 26 factors, Caspian Sea Bream with Azerbijan republic Bream in 29 factors and Aras Dam Lake Bream with Azerbijan republic Bream in 34 factor had significant statistical differences. Based on Meristic factor of four regions bream in 16 surveyed factors in 10 factors had meaningful differences according to the One Way ANOVA Analysis. While Anzali wetland Bream was surveyed with Caspian Sea Bream from in 3 factors,Anzali wetland Bream with Aras Dam lake in 8 factors,Anzali wetland Bream with Azerbijan republic B ream in 6 factors,Caspian Sea bream with Arsa Dam Lake Bream in 6 factors,Caspian sea Bream with Azerbijan republic Bream in 3 factors and Aras Dam Lake Bream with Azerijan republic Bream in 8 factor had significant statistical differences.Meanwihle based on Factor Analysis and Discriminant Breams had differences. Also according to the resrarchs Anzali wetland Bream in 0+ age group till 5+ (6 age groups),Caspian Sea bream in 1+ - 5+(5 age groups),Aras Darn Lake Bream in 1+ - 7+ (7 age groups) and Azerbijan republic Bream for Morphometric and Meristic studies in 1+age group and for molecular Genetic reaserch were in 8+and 9+ age groups. According to the research 4 ecosystems Bream in status of same age, Aras lake Bream were bigger according to weight and length.Also in this research genetic diversity between four population was researched by PCR-RFLP technic on a piece of mitochondrion genome with the length of 3500bp contain of tRNA-leu,tRNA-glu,ND5/6,Cytb. Between 17 used enzyme. 4 enzyme, Dral, Bc11, Haefll and Banff showed diversity in totally 6 composite haplotype was detected. Maximum nucleotide diversity by the value% 0/58 in Azerbijan republic Bream by all haplotype. Aras darn Lake Bream had 2 haplotype and nucleotide diversity of %0/35.Anzali wetland and Caspian Sea Bream had no diversity. Statistical analysis by the usage of Monte Carlo with 1000 repeat showed significant differences between Azerbaijan Bream and other Bream(P<0/0001) but there was no significant difference between 3 regions Bream(P>0/5).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ribbon fishes ‘of the family Trichiuridac are represented as one of the most important food resources in Indian ocean. High density of the dominant species of ribbon fish (Trichiurus lepturus) in Oman sea and the 'Tillable catch in last yeas (more than 7000 tones per year) makes a trust area for studing their population biolog and stock assessment. As our knowledge on reproductive biology of this species has an important role on their fisheries management, as well as conservation of this stock from decline or over fishing, this research was held to determine some aspects of reproductive physiology of ribbon fish and the effects of environmental factors in gonadal cycle. The goals of the present thesis is to determine some aspects of reproductive physiology such as gonadosomatic index (GSI) , hepatosomatic index (HSI), condition factor (Ko, fecundity, sex ratio, size at first maturity, size at maturity (LM5O) and their relative hormonal & biochemical fluctuations. In this regards annual variation of sex hormones ic. estradiol 17-B, progestron, cortisol, testostrone and gonadotropins FSH (GTH-I) , LH (GTH-ll)I were measured ; gonadal histological studies were done by light & electron micrography. The research was carried out from April 1995 to January 19% in Ras Nleidani in the north part of Oman sea, and the environmental factors such as temperature, salinity, oxygen, rainfall and pH were measured. The effects of these parameters on reproductive cycle and hormonal fluctuationswere discussed by using correlation and principle component analysis (PCA). Female Ribbon fish reproductive strategy shows the same paterns of nonguarder marine teleosts. T. lepturus has more than one spawning season (existance of egges in different size in each month) and therfore it must have asynchronous ovaries and belong to continious spawners. GSI and HSI are good evidences for this type of reproductive patern. The testis of the lobular type , which is typical of most teleosts , is composed of numerous lobules which are separated from each other by a thin layer of fibrous connective tissue. GSI fluctuations revealed prolong- spawning time in males. There is significant increase in 17-13 estradiol. progestrone , cortisol and gonadotropins with maturity and prespawning period of female T lepturus. Plasma concentration of E2 and GTH II incresaed along with water temperature increasing (3300).. Spawning was observed from Nov. 1995 to Apr. 1996 in this species. Progestrone increased significantly with increasing rainfall in this season (P<0.01). Plasma cortisol levels increased with maturation and vitelpgenesis and also with the peak of spawning. From lenght-weight frequency and size distribution in each age groups and also minimum size at first maturity (52a cm) it would he concluded that T. lepturus must be matured at 2 years of age. Serum cholestrol and triglicerides significantly increased when maturation occured in this species. The relationship between alkaline phosphatase activity and hormonal fluctuations with maturity and vitelogenesis were discussed. Proximate compostion (muscle) shows significant variation with spawning period and maturity. Absolute individual fecundity (17420-159150) increased with body length and weight. Ultrastructural observations show dramatic variation in cell membrane (0ocyte membrane), yolk vesicles and, nucleolus dispersal in relation to maturity stages. fluctuations of gonadal hormones were discused in relation with vitelogenesis. Testosterone increased in males from Nov: to Mar. due to environmental impacts and spawning time. Sex ratio in different depth (10-40 m ,80-110 m) shows significnt differences in this ratio for two depths. In 10-40 m depth female shows dominant abundance to male in each months that may be due to their reproductive migration behaviour. The effects of temperature photoperiod and rainfall to maturity and spawning were discussed. According to -pawning period of T. leptunts in our sampling area it could be suggested that ribbon fish fi,theries must be restricted in the peak of spawning seasons (Feb. to Mar.) and in the spawning grounds (under 40 m depths). Other suggestions for population conservation have been mentioned.