3 resultados para hydrolyzed bagasse

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial biofilms have been found to increase fish production in ponds by increasing heterotrophic production through periphyton proliferation on available substrates. In this paper, the role of substrate based microbial biofilm in the production of Cyprinus carpio and Labeo rohita grown in ponds is investigated, using an easily available and biodegradable agricultural waste product (sugarcane bagasse) as substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetylcholinesterase and serum glutamate oxaloacetate transaminase enzymes have been used as marker monitoring the effect of neem seed based pesticide Neemta 2100 on the fish, Oreochromis mossambicus. Fishes exposed to sublethal concentrations of Neemta 2100 for acute periods of 24 and 48 hours were sacrificed to determine enzyme activities in serum affected due to toxicity. Laboratory studies of in vivo exposure of this pesticide showed synergistic inhibitory effect during acute period of toxicity. Acetylcholinesterase was noticed as 6.25 µm substrate hydrolyzed/mg protein/hour and serum glutamate oxaloacetate transaminase was noticed as 36.71 µm substrate hydrolyzed/mg protein/hour in control fish serum. Significant decrease in GOT level in Neemta 2100 treated fishes after short term exposure indicated its severe toxicity to fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Production of bioethanol through acidic and enzymatic hydrolysis of aquatic Azolla sp., as a new source of bio-mass, has been performed, as a means to control increasing growth and reducing undesirable effects of this plant in Anzali lagoon. After sampling, drying and crushing, Azolla was hydrolyzed, using diluted acid and enzyme. Diluted acid hydrolysis was done using both autoclave and a high-pressure system (Batch Synth® Microwave synthesizer). The effects of temperature and time (in autoclave) and concentration of acid (in both) were compared. Cellubrix®, a ommercial cellulase source, was used for enzymatic hydrolysis process. The amounts of reducing sugars, glucose and furfural, released from hydrolyzate, were measured. To produce alcohol, Sacchromyces cerevisiae (to ferment sixcarbon sugars), Zygowilliopsis californica and Pichia stipitis (to ferment five-carbon and sixcarbon sugars) were used. Maximum amounts of glucose (4.83% w/w) and reducing sugars (14.15% w/w) were obtained using acid hydrolysis in autoclave. In the microwave oven, maximum glucose (5.04% w/w) and reducing sugars (13.27 w/w) were obtained at 180 and 200 °C, respectively. Under these conditions, maximum produced furfural was 1.54 g/L. The difference between amounts of furfural obtained from acid hydrolysis of Azolla in microwave oven compared to autoclave was statistically significant. Amounts of alcohol produced and its yields were 3.99 g/L and 33.13% for S. cerevisiae in 48 hours, 3.73 g/L and 30.45% for Pichia stipites in 48 hours, and 3.73 g/L and 30.45% for Z. californica in 24 hours after inoculation, respectively, with significant differences. Statistical comparison of results showed significant differences (P<0.05) in glucose production, at different conditions. Amounts of reducing sugars and glucose increased after optimization of levels of acid, time, and temperature. The overall optimum released sugar and glucose were obtained with 1.67% (w/v) acid using autoclave. Higher temperatures in microwave oven caused a significant increase (P<0.05) in furfural. Furfural severely inhibits fermentation. Hence, regarding the issues of energy consumption and time, amounts of inhibiting substances and sugar production, autoclave is found to be superior to the high temperature and pressure, generated in microwave oven, for hydrolyzing Azolla. Furthermore, given the amounts of Azolla in Anzali lagoon, it may be recommendable to use this plant as a biomass resource.