2 resultados para genetic composition

em Aquatic Commons


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cobia (Rachycentron canadum) is a pelagic, migratory species with a transoceanic distribution in tropical and subtropical waters. Recreational fishing pressure on Cobia in the United States has increased substantially during the last decade, especially in areas of its annual inshore aggregations, making this species potentially susceptible to overfishing. Although Cobia along the Atlantic and Gulf coasts of the southeastern United States are currently managed as a single fishery, the genetic composition of Cobias in these areas is unclear. On the basis of a robust microsatellite data set from collections along the U.S. Atlantic coast (2008–09), offshore groups were genetically homogenous. However, the 2 sampled inshore aggregations (South Carolina and Virginia) were genetically distinct from each other, as well as from the offshore group. The recapture of stocked fish within their release estuary 2 years after release indicates that some degree of estuarine fidelity occurs within these inshore aggregations and supports the detection of their unique genetic structure at the population level. These results complement the observed high site fidelity of Cobias in South Carolina and support a recent study that confirms that Cobia spawn in the inshore aggregations. Our increased understanding of Cobia life history will be beneficial for determining the appropriate scale of fishery management for Cobia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variation at 14 microsatellite loci was examined in 34 chum salmon (Oncorhynchus keta) populations from Russia and evaluated for its use in the determination of population structure and stock composition in simulated mixed-stock fishery samples. The genetic differentiation index (Fst) over all populations and loci was 0.017, and individual locus values ranged from 0.003 to 0.054. Regional population structure was observed, and populations from Primorye, Sakhalin Island, and northeast Russia were the most distinct. Microsatellite variation provided evidence of a more fine-scale population structure than those that had previously been demonstrated with other genetic-based markers. Analysis of simulated mixed-stock samples indicated that accurate and precise regional estimates of stock composition were produced when the microsatellites were used to estimate stock compositions. Microsatellites can be used to determine stock composition in geographically separate Russian coastal chum salmon fisheries and provide a greater resolution of stock composition and population structure than that previously provided with other techniques.