3 resultados para Sensory analysis

em Aquatic Commons


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Effects of different thawing method i.e. in a refrigerator, in water, at air ambient temperature and in a microwave oven on proximate, chemical (PV, TBA, FFA, TVB-N, SSP, FA), biochemical (pH, WHC,ThL), microbial (total viable, psychrotrophic, coliform, Shewanella and yeast-mould count) and sensory analysis were carried out on frozen whole Caspian sea Kutum (Rutilus frisii kutum) and Rainbow trout (Oncorhynchus mykiss) carcasses. The values of ash, protein, SSP, WHC, PUFA, PUFA/SFA. EPA+DHA/C16:0, pH, and microbial count of thawed samples decreased significantly while fat, PV, TBA, FFA, TVB-N, SFA and MUFA increased compared to the fresh fish (unfrozen) as control samples. Also, sensory evaluation all of thawed samples showed a significant (p<0.05) quality loss compared to the fresh fish as control samples. The lowest chemical and biochemical values as well as microbial growth were determined in water thawed samples. Therefore, based on this study thawing in water is most suitable for frozen whole rainbow trout.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental procedure along with a method of analysis to judge the suitability of an individual to be included in a taste panel is described. The procedure is based on comparison of the organoleptic scores assigned by the individual to pairs of fish samples whose qualities are known and a set of physical measurements of the same samples. Fisher's Exact Probability Test provides a criterion for the judgement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Black mouth croaker (Atrobucca nibe) is considered as a new valuable fish stock in the Oman Sea. In this study, surimi was manufactured from nonmarket size of the fish, manually and different cryoprotectant agents were added to the surimi. Finally changes in physiochemical, microbiological and sensory quality, characteristics of the surimi and kamaboko gel samples were assessed during 6 months at freezing storage (-18ºC). Surimi samples with the addition of Iranian tragacanth gum (TG), xanthan gum (XG), chitosan (CS) and whey protein concentrate (WPC) at 1% (w/w) were prepared to evaluate their impacts as a cryoprotectant on the surimi, individually. The results showed that the whiteness and lightness indexes in all surimi samples were gradually decreased during frozen storage. This trend of decreasing was more intensity in the control sample from 61.08±0.131 to 54.21±0.067 was recorded (p<0.05). Water holding capacity (WHC) in all treatments was decreased during 6 months. The lowest WHC (g/g) was obtained in the surimi without cryoprotectants and maximum WHC was measured in Tcs and Twpc samples, respectively (p<0.05). The lowest breaking force was calculated in Txg (166.00±22.627 g) and Tc (271.50±263.16 g) during 6 months at frozen storage, respectively (p<0.05), while Twpc treatment with slight variations showed the highest breaking force (p<0.05). Also, the lowest gel strength was obtained in Txg (68.22±6.740 g.cm) after 6 month of frozen storage (p<0.05). All Kamaboko surimi gels texture profile analysis parameters decreaced with increasing shelf life. This decreasing trend in the control sample was more severe. Floding results were reduced in all samples during storage (p<0.05). The best protective results probably were obtained in WPC, chitosan and commercial cryoprotectant agents, respectively due to protein stabilization of myofibrillar proteins and the protein-protein network structure, leading to the formation of surimi gel with strong textural properties during frozen conditions. The average number of surimi polygonal structures were significantly decreased (number per mm2) and their area were significantly increased (μm2) in all treatments (p<0.05). With increasing storage time, moisture, protein contents and pH were decreaced. Maximun TVB-N index was calculated in Tc (7.93±0.400 mg/100g) and Txg (7.88±0.477), respectively (p<0.05). TBRAs index was increased in all treatments during frozen storage, while this trend was reached in maximum value in Tc (p<0.05). Sensory evaluation of the fish finger quality characteristics (color, odor, texture and overall acceptability) preapare from frozen black mouth croaker surimi was decreaced during 6 month frozen storage. After the period of frozen storage the highest quality scores were measured in Twpc, Tcs and Tcc samples, respectively (p<0.05). In this study, coliform bacteria were not found in all treatments during frozen storage. The surimi sample containing chitosan showed lower mesophilic and psychrotropic bacteria (log cfu/g) than other treatments during frozen storage (p<0.05). Salt-soluble proteins extractions of all treatments were decreased during frozen storage. This decreacing trend was highest in Tcs (45.74±0.176%) and lowest in Tc treatments after 6 month of frozen storage (29.92±0.224%) (p<0.05). Although commercial cryoprotectant agents were successful in limiting the denaturation of proteins but sugar contents were not accepted for diabetics or those who disagree with the sweet taste and high calorie food. Hence, commercial cryoprotectant agents can be replaced with whey protein concentrate and chitosan at 1% level (w/w) consider that they were showed proper protection of the surimi myofibrillar proteins during storage.