5 resultados para tissue transglutaminase

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peripheral blood mononuclear cells and lymphoid tissues from HIV-infected individuals display high levels of "tissue" transglutaminase (tTG) with respect to seronegative persons. In asymptomatic individuals, > 80% of the circulating CD4+ T cells synthesize tTG protein and the number of these cells matches the level of apoptosis detected in the peripheral blood mononuclear cells from the same patients. In HIV-infected lymph nodes tTG protein is localized in large number of cells (macrophages, follicular dendritic cells, and endothelial cells), showing distinctive morphological and biochemical features of apoptosis as well as in lymphocytes and syncytia. These findings demonstrate that during the course of HIV infection, high levels of apoptosis also occur in the accessory cells of lymphoid organs. The increased concentration of epsilon(gamma-glutamyl)lysine isodipeptide, the degradation product of tTG cross-linked proteins, observed in the blood of HIV-infected individuals demonstrates that the enzyme accumulated in the dying cells actively cross-links intracellular proteins. The enhanced levels of epsilon(gamma-glutamyl)lysine in the blood parallels the progression of HIV disease, suggesting that the isodipeptide determination might be a useful method to monitor the in vivo rate of apoptosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several adult-onset neurodegenerative diseases are caused by genes with expanded CAG triplet repeats within their coding regions and extended polyglutamine (Qn) domains within the expressed proteins. Generally, in clinically affected individuals n ≥ 40. Glyceraldehyde 3-phosphate dehydrogenase binds tightly to four Qn disease proteins, but the significance of this interaction is unknown. We now report that purified glyceraldehyde 3-phosphate dehydrogenase is inactivated by tissue transglutaminase in the presence of glutathione S-transferase constructs containing a Qn domain of pathological length (n = 62 or 81). The dehydrogenase is less strongly inhibited by tissue transglutaminase in the presence of constructs containing shorter Qn domains (n = 0 or 10). Purified α-ketoglutarate dehydrogenase complex also is inactivated by tissue transglutaminase plus glutathione S-transferase constructs containing pathological-length Qn domains (n = 62 or 81). The results suggest that tissue transglutaminase-catalyzed covalent linkages involving the larger poly-Q domains may disrupt cerebral energy metabolism in CAG/Qn expansion diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pathognomonic plaques of Alzheimer’s disease are composed primarily of the 39- to 43-aa β-amyloid (Aβ) peptide. Crosslinking of Aβ peptides by tissue transglutaminase (tTg) indicates that Gln15 of one peptide is proximate to Lys16 of another in aggregated Aβ. Here we report how the fibril structure is resolved by mapping interstrand distances in this core region of the Aβ peptide chain with solid-state NMR. Isotopic substitution provides the source points for measuring distances in aggregated Aβ. Peptides containing a single carbonyl 13C label at Gln15, Lys16, Leu17, or Val18 were synthesized and evaluated by NMR dipolar recoupling methods for the measurement of interpeptide distances to a resolution of 0.2 Å. Analysis of these data establish that this central core of Aβ consists of a parallel β-sheet structure in which identical residues on adjacent chains are aligned directly, i.e., in register. Our data, in conjunction with existing structural data, establish that the Aβ fibril is a hydrogen-bonded, parallel β-sheet defining the long axis of the Aβ fibril propagation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Programmed cell death (apoptosis) is an intrinsic part of organismal development and aging. Here we report that many nonsteroidal antiinflammatory drugs (NSAIDs) cause apoptosis when applied to v-src-transformed chicken embryo fibroblasts (CEFs). Cell death was characterized by morphological changes, the induction of tissue transglutaminase, and autodigestion of DNA. Dexamethasone, a repressor of cyclooxygenase (COX) 2, neither induced apoptosis nor altered the NSAID effect. Prostaglandin E2, the primary eicosanoid made by CEFs, also failed to inhibit apoptosis. Expression of the protooncogene bcl-2 is very low in CEFs and is not altered by NSAID treatment. In contrast, p20, a protein that may protect against apoptosis when fibroblasts enter G0 phase, was strongly repressed. The NSAID concentrations used here transiently inhibit COXs. Nevertheless, COX-1 and COX-2 mRNAs and COX-2 protein were induced. In some cell types, then, chronic NSAID treatment may lead to increased, rather than decreased, COX activity and, thus, exacerbate prostaglandin-mediated inflammatory effects. The COX-2 transcript is a partially spliced and nonfunctional form previously described. Thus, these findings suggest that COXs and their products play key roles in preventing apoptosis in CEFs and perhaps other cell types.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protein extracted from root and leaf tissue of the dicotyledonous plants pea (Pisum sativum) and broad bean (Vicia faba) and the monocotyledonous plants wheat (Triticum aestivum) and barley (Hordeum vulgare) were shown to catalyze the incorporation of biotin-labeled cadaverine into microtiter-plate-bound N′,N′-dimethylcasein and the cross-linking of biotin-labeled casein to microtiter-plate-bound casein in a Ca2+-dependent manner. The cross-linking of biotinylated casein and the incorporation of biotin-labeled cadaverine into N′,N′-dimethylcasein were time-dependent reactions with a pH optimum of 7.9. Transglutaminase activity was shown to increase over a 2-week growth period in both the roots and leaves of pea. The product of transglutaminase's protein-cross-linking activity, ε-(γ-glutamyl)-lysine isodipeptide, was detected in root and shoot protein from pea, broad bean, wheat, and barley by cation-exchange chromatography. The presence of the isodipeptide was confirmed by reversed-phase chromatography. Hydrolysis of the isodipeptide after cation-exchange chromatography confirmed the presence of glutamate and lysine.