73 resultados para low density lipoprotein receptor

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have generated mice with markedly elevated plasma levels of human low density lipoprotein (LDL) and reduced plasma levels of high density lipoprotein. These mice have no functional LDL receptors [LDLR−/−] and express a human apolipoprotein B-100 (apoB) transgene [Tg(apoB+/+)] with or without an apo(a) transgene [Tg(apoa+/−)]. Twenty animals (10 males and 10 females) of each of the following four genotypes were maintained on a chow diet: (i) LDLR−/−, (ii) LDLR−/−;Tg(apoa+/−), (iii) LDLR−/−;Tg(apoB+/+), and (iv)LDLR−/−;Tg(apoB+/+);Tg(apo+/−). The mice were killed at 6 mo, and the percent area of the aortic intimal surface that stained positive for neutral lipid was quantified. Mean percent areas of lipid staining were not significantly different between the LDLR−/− and LDLR−/−;Tg(apoa+/−) mice (1.0 ± 0.2% vs. 1.4 ± 0.3%). However, the LDLR−/−;Tg(apoB+/+) mice had ≈15-fold greater mean lesion area than the LDLR−/− mice. No significant difference was found in percent lesion area in the LDLR−/−;Tg(apoB+/+) mice whether or not they expressed apo(a) [18.5 ± 2.5%, without lipoprotein(a), Lp(a), vs. 16.0 ± 1.7%, with Lp(a)]. Histochemical analyses of the sections from the proximal aorta of LDLR−/−;Tg(apoB+/+) mice revealed large, complex, lipid-laden atherosclerotic lesions that stained intensely with human apoB-100 antibodies. In mice expressing Lp(a), large amounts of apo(a) protein colocalized with apoB-100 in the lesions. We conclude that LDLR−/−; Tg(apoB+/+) mice exhibit accelerated atherosclerosis on a chow diet and thus provide an excellent animal model in which to study atherosclerosis. We found no evidence that apo(a) increased atherosclerosis in this animal model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced glycation end products (AGEs) are thought to contribute to the abnormal lipoprotein profiles and increased risk of cardiovascular disease of patients with diabetes and renal failure, in part by preventing apolipoprotein B (apoB)-mediated cellular uptake of low density lipoproteins (LDL) by LDL receptors (LDLr). It has been proposed that AGE modification at one site in apoB, almost 1,800 residues from the putative apoB LDLr-binding domain, may be sufficient to induce an apoB conformational change that prevents binding to the LDLr. To further explore this hypothesis, we used 29 anti-human apoB mAbs to identify other potential sites on apoB that may be modified by in vitro advanced glycation of LDL. Glycation of LDL caused a time-dependent decrease in its ability to bind to the LDLr and in the immunoreactivity of six distinct apoB epitopes, including two that flank the apoB LDLr-binding domain. ApoB appears to be modified at multiple sites by these criteria, as the loss of glycation-sensitive epitopes was detected on both native glycated LDL and denatured, delipidated glycated apoB. Moreover, residues directly within the putative apoB LDLr-binding site are not apparently modified in glycated LDL. We propose that the inability of LDL modified by AGEs to bind to the LDLr is caused by modification of residues adjacent to the putative LDLr-binding site that were undetected by previous immunochemical studies. AGE modification either eliminates the direct participation of the residues in LDLr binding or indirectly alters the conformation of the apoB LDLr-binding site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endocytosis of the Flaviviridae viruses, hepatitis C virus, GB virus C/hepatitis G virus, and bovine viral diarrheal virus (BVDV) was shown to be mediated by low density lipoprotein (LDL) receptors on cultured cells by several lines of evidence: by the demonstration that endocytosis of these virus correlated with LDL receptor activity, by complete inhibition of detectable endocytosis by anti-LDL receptor antibody, by inhibition with anti-apolipoprotein E and -apolipoprotein B antibodies, by chemical methods abrogating lipoprotein/LDL receptor interactions, and by inhibition with the endocytosis inhibitor phenylarsine oxide. Confirmatory evidence was provided by the lack of detectable LDL receptor on cells known to be resistant to BVDV infection. Endocytosis via the LDL receptor was shown to be mediated by complexing of the virus to very low density lipoprotein or LDL but not high density lipoprotein. Studies using LDL receptor-deficient cells or a cytolytic BVDV system indicated that the LDL receptor may be the main but not exclusive means of cell entry of these viruses. Studies on other types of viruses indicated that this mechanism may not be exclusive to Flaviviridae but may be used by viruses that associate with lipoprotein in the blood. These findings provide evidence that the family of LDL receptors may serve as viral receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One crucial role of endothelium is to keep the innermost surface of a blood vessel antithrombotic. However, the endothelium also expresses prothrombotic molecules in response to various stimuli. The balance between the antithrombotic and prothrombotic nature of the endothelium is lost under certain conditions. During atherosclerosis, the attachment of platelets to the vessel surface has been suggested to promote the proliferation of smooth muscle cells and intimal thickening as well as to affect the prognosis of the disease directly through myocardial infarction and stroke. Dysfunctional endothelium, which is often a result of the action of oxidized low-density lipoprotein (OxLDL), tends to be more procoagulant and adhesive to platelets. Herein, we sought the possibility that the endothelial lectin-like OxLDL receptor-1 (LOX-1) is involved in the platelet–endothelium interaction and hence directly in endothelial dysfunction. LOX-1 indeed worked as an adhesion molecule for platelets. The binding of platelets was inhibited by a phosphatidylserine-binding protein, annexin V, and enhanced by agonists for platelets. These results suggest that negative phospholipids exposed on activation on the surface of platelets are the epitopes for LOX-1. Notably, the binding of platelets to LOX-1 enhanced the release of endothelin-1 from endothelial cells, supporting the induction of endothelial dysfunction, which would, in turn, promote the atherogenic process. LOX-1 may initiate and promote atherosclerosis, binding not only OxLDL but also platelets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclooxygenase (COX) product, prostacyclin (PGI2), inhibits platelet activation and vascular smooth-muscle cell migration and proliferation. Biochemically selective inhibition of COX-2 reduces PGI2 biosynthesis substantially in humans. Because deletion of the PGI2 receptor accelerates atherogenesis in the fat-fed low density lipoprotein receptor knockout mouse, we wished to determine whether selective inhibition of COX-2 would accelerate atherogenesis in this model. To address this hypothesis, we used dosing with nimesulide, which inhibited COX-2 ex vivo, depressed urinary 2,3 dinor 6-keto PGF1α by approximately 60% but had no effect on thromboxane formation by platelets, which only express COX-1. By contrast, the isoform nonspecific inhibitor, indomethacin, suppressed platelet function and thromboxane formation ex vivo and in vivo, coincident with effects on PGI2 biosynthesis indistinguishable from nimesulide. Indomethacin reduced the extent of atherosclerosis by 55 ± 4%, whereas nimesulide failed to increase the rate of atherogenesis. Despite their divergent effects on atherogenesis, both drugs depressed two indices of systemic inflammation, soluble intracellular adhesion molecule-1, and monocyte chemoattractant protein-1 to a similar but incomplete degree. Neither drug altered serum lipids and the marked increase in vascular expression of COX-2 during atherogenesis. Accelerated progression of atherosclerosis is unlikely during chronic intake of specific COX-2 inhibitors. Furthermore, evidence that COX-1-derived prostanoids contribute to atherogenesis suggests that controlled evaluation of the effects of nonsteroidal anti-inflammatory drugs and/or aspirin on plaque progression in humans is timely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipoprotein lipase (LPL) is a key enzyme in the hydrolysis of triglyceride-rich lipoproteins. Conflicting results have been reported concerning its role in atherogenesis. To determine the effects of the overexpressed LPL on diet-induced atherosclerosis, we have generated low density lipoprotein receptor (LDLR) knockout mice that overexpressed human LPL transgene (LPL/LDLRKO) and compared their plasma lipoproteins and atherosclerosis with those in nonexpressing LDLR-knockout mice (LDLRKO). On a normal chow diet, LPL/LDLRKO mice showed marked suppression of mean plasma triglyceride levels (32 versus 236 mg/dl) and modest decrease in mean cholesterol levels (300 versus 386 mg/dl) as compared with LDLRKO mice. Larger lipoprotein particles of intermediate density lipoprotein (IDL)/LDL were selectively reduced in LPL/LDLRKO mice. On an atherogenic diet, both mice exhibited severe hypercholesterolemia. But, mean plasma cholesterol levels in LPL/ LDLRKO mice were still suppressed as compared with that in LDLRKO mice (1357 versus 2187 mg/dl). Marked reduction in a larger subfraction of IDL/LDL, which conceivably corresponds to remnant lipoproteins, was observed in the LPL/LDLRKO mice. LDLRKO mice developed severe fatty streak lesions in the aortic sinus after feeding with the atherogenic diet for 8 weeks. In contrast, mean lesion area in the LPL/LDLRKO mice was 18-fold smaller than that in LDLRKO mice. We suggest that the altered lipoprotein profile, in particular the reduced level of remnant lipoproteins, is mainly responsible for the protection by LPL against atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epsilon 4 allele of apolipoprotein E (apoE) is a major risk factor for Alzheimer disease, suggesting that apoE may directly influence neurons in the aging brain. Recent data suggest that apoE-containing lipoproteins can influence neurite outgrowth in an isoform-specific fashion. The neuronal mediators of apoE effects have not been clarified. We show here that in a central nervous system-derived neuronal cell line, apoE3 but not apoE4 increases neurite extension. The effect of apoE3 was blocked at low nanomolar concentrations by purified 39-kDa protein that regulates ligand binding to the low density lipoprotein receptor-related protein (LRP). Anti-LRP antibody also completely abolished the neurite-promoting effect of apoE3. Understanding isoform-specific cell biological processes mediated by apoE-LRP interactions in central nervous system neurons may provide insight into Alzheimer disease pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The so-called very low density lipoprotein receptors (VLDLRs) are related to the LDLR gene family. So far, naturally occurring mutations have only been described for the prototype LDLR; in humans, they cause familial hypercholesterolemia. Here we describe a naturally occurring mutation in a VLDLR that causes a dramatic abnormal phenotype. Hens of the mutant restricted-ovulator chicken strain carry a single mutation, lack functional oocyte receptors, are sterile, and display severe hyperlipidemia with associated premature atherosclerosis. The mutation converts a cysteine residue into a serine, resulting in an unpaired cysteine and greatly reduced expression of the mutant avian VLDLR on the oocyte surface. Extraoocytic cells in the mutant produce higher than normal amounts of a differentially spliced form of the receptor that is characteristic for somatic cells but absent from germ cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The very low density lipoprotein (VLDL) receptor is a recently cloned member of the low density lipoprotein (LDL) receptor family that mediates the binding and uptake of VLDL when overexpressed in animal cells. Its sequence is 94% identical in humans and rabbits and 84% identical in humans and chickens, implying a conserved function. Its high level expression in muscle and adipose tissue suggests a role in VLDL triacylglycerol delivery. Mutations in the chicken homologue cause female sterility, owing to impaired VLDL and vitellogenin uptake during egg yolk formation. We used homologous recombination in mouse embryonic stem cells to produce homozygous knockout mice that lack immunodetectable VLDL receptors. Homozygous mice of both sexes were viable and normally fertile. Plasma levels of cholesterol, triacylglycerol, and lipoproteins were normal when the mice were fed normal, high-carbohydrate, or high-fat diets. The sole abnormality detected was a modest decrease in body weight, body mass index, and adipose tissue mass as determined by the weights of epididymal fat pads. We conclude that the VLDL receptor is not required for VLDL clearance from plasma or for ovulation in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-density lipoprotein (LDL) receptor plays a central role in mammalian cholesterol metabolism, clearing lipoproteins which bear apolipoproteins E and B-100 from plasma. Mutations in this molecule are associated with familial hypercholesterolemia, a condition which leads to an elevated plasma cholesterol concentration and accelerated atherosclerosis. The N-terminal segment of the LDL receptor contains a heptad of cysteine-rich repeats that bind the lipoproteins. Similar repeats are present in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement. The first repeat of the human LDL receptor has been expressed in Escherichia coli as a glutathione S-transferase fusion protein, and the cleaved and purified receptor module has been shown to fold to a single, fully oxidized form that is recognized by the monoclonal antibody IgG-C7 in the presence of calcium ions. The three-dimensional structure of this module has been determined by two-dimensional NMR spectroscopy and shown to consist of a beta-hairpin structure, followed by a series of beta turns. Many of the side chains of the acidic residues, including the highly conserved Ser-Asp-Glu triad, are clustered on one face of the module. To our knowledge, this structure has not previously been described in any other protein and may represent a structural paradigm both for the other modules in the LDL receptor and for the homologous domains of several other proteins. Calcium ions had only minor effects on the CD spectrum and no effect on the 1H NMR spectrum of the repeat, suggesting that they induce no significant conformational change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feedback regulation of transcription from the low density lipoprotein (LDL) receptor gene is fundamentally important in the maintenance of intracellular sterol balance. The region of the LDL receptor promoter responsible for normal sterol regulation contains adjacent binding sites for the ubiquitous transcription factor Sp1 and the cholesterol-sensitive sterol regulatory element-binding proteins (SREBPs). Interestingly, both are essential for normal sterolmediated regulation of the promoter. The cooperation by Sp1 and SREBP-1 occurs at two steps in the activation process. SREBP-1 stimulates the binding of Sp1 to its adjacent recognition site in the promoter followed by enhanced stimulation of transcription after both proteins are bound to DNA. In the present report, we have defined the protein domains of Sp1 that are required for both synergistic DNA binding and transcriptional activation. The major activation domains of Sp1 that have previously been shown to be essential to activation of promoters containing multiple Sp1 sites are required for activation of the LDL receptor promoter. Additionally, the C domain is also crucial. This slightly acidic approximately 120-amino acid region is not required for efficient synergistic activation by multiple Sp1 sites or in combination with other recently characterized transcriptional regulators. We also show that Sp1 domain C is essential for full, enhanced DNA binding by SREBP-1. Taken together with other recent studies on the role of Sp1 in promoter activation, the current experiments suggest a unique combinatorial mechanism for promoter activation by two distinct transcription factors that are both essential to intracellular cholesterol homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 39-kDa receptor-associated protein (RAP) associates with the multifunctional low density lipoprotein (LDL) receptor-related protein (LRP) and thereby prevents the binding of all known ligands, including alpha 2-macroglobulin and chylomicron remnants. RAP is predominantly localized in the endoplasmic reticulum, raising the possibility that it functions as a chaperone or escort protein in the biosynthesis or intracellular transport of LRP. Here we have used gene targeting to show that RAP promotes the expression of functional LRP in vivo. The amount of mature, processed LRP is reduced in liver and brain of RAP-deficient mice. As a result, hepatic clearance of alpha 2-macroglobulin is impaired and remnant lipoproteins accumulate in the plasma of RAP-deficient mice that also lack functional LDL receptors. These results are consistent with the hypothesis that RAP stabilizes LRP within the secretory pathway. They also suggest a further mechanism by which the activity of an endocytic receptor may be modulated in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two endocytic receptors, the low density lipoprotein (LDL) receptor (LDLR) and the LDLR-related protein (LRP), are thought to act in concert in the hepatic uptake of partially metabolized dietary lipoproteins, the chylomicron remnants. We have evaluated the role of these two receptors in the hepatic metabolism of chylomicron remnants in normal mice and in LDLR-deficient [LDLR (-/-)] mice. The rate of chylomicron remnant removal by the liver was normal up to 30 min after intravenous injection of chylomicrons into LDLR (-/-) mice and was unaffected by receptor-associated protein (RAP), a potent inhibitor of ligand binding to LRP. In contrast, endocytosis of the remnants by the hepatocytes, measured by their accumulation in the endosomal fraction and by the rate of hydrolysis of component cholesteryl esters, was dramatically reduced in the absence of the LDLR. Coadministration of RAP prevented the continuing hepatic removal of chylomicron remnants in LDL (-/-) mice after 30 min, consistent with blockade of the slow endocytosis by a RAP-sensitive process. Taken together with previous studies, our results are consistent with a model in which the initial hepatic removal of chylomicron remnants is primarily mediated by mechanisms that do not include LDLR or LRP, possibly involving glycosaminoglycan-bound hepatic lipase and apolipoprotein E. After the remnants bind to these alternative sites on the hepatocyte surface, endocytosis is predominantly mediated by the LDLR and also by a slower and less efficient backup process that is RAP sensitive and therefore most likely involves LRP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that has been demonstrated to regulate fat cell development and glucose homeostasis. PPARγ is also expressed in a subset of macrophages and negatively regulates the expression of several proinflammatory genes in response to natural and synthetic ligands. We here demonstrate that PPARγ is expressed in macrophage foam cells of human atherosclerotic lesions, in a pattern that is highly correlated with that of oxidation-specific epitopes. Oxidized low density lipoprotein (oxLDL) and macrophage colony-stimulating factor, which are known to be present in atherosclerotic lesions, stimulated PPARγ expression in primary macrophages and monocytic cell lines. PPARγ mRNA expression was also induced in primary macrophages and THP-1 monocytic leukemia cells by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Inhibition of protein kinase C blocked the induction of PPARγ expression by TPA, but not by oxLDL, suggesting that more than one signaling pathway regulates PPARγ expression in macrophages. TPA induced the expression of PPARγ in RAW 264.7 macrophages by increasing transcription from the PPARγ1 and PPARγ3 promoters. In concert, these observations provide insights into the regulation of PPARγ expression in activated macrophages and raise the possibility that PPARγ ligands may influence the progression of atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the question of whether apolipoprotein E (apoE) alters steady-state concentrations of plasma cholesterol carried in low density lipoproteins (LDL-C) by acting as a competitive inhibitor of hepatic LDL uptake or by altering the rate of net cholesterol delivery from the intestinal lumen to the liver. To differentiate between these two possibilities, rates of cholesterol absorption and synthesis and the kinetics of hepatic LDL-C transport were measured in vivo in mice with either normal (apoE+/+) or zero (apoE-/-) levels of circulating apoE. Rates of cholesterol absorption were essentially identical in both genotypes and equaled approximately 44% of the daily dietary load of cholesterol. This finding was consistent with the further observation that the rates of cholesterol synthesis in the liver (approximately 2,000 nmol/h) and extrahepatic tissues (approximately 3,000 nmol/h) were also essentially identical in the two groups of mice. However, the apparent Michaelis constant for receptor-dependent hepatic LDL-C uptake was markedly lower in the apoE-/- mice (44 +/- 4 mg/dl) than in the apoE+/+ animals (329 +/- 77 mg/dl) even though the maximal transport velocity for this uptake process was essentially the same (approximately 400 micrograms/h per g) in the two groups of mice. These studies, therefore, demonstrate that apoE-containing lipoproteins can act as potent competitive inhibitors of hepatic LDL-C transport and so can significantly increase steady-state plasma LDL-C levels. This apolipoprotein plays no role, however, in the regulation of cholesterol absorption, sterol biosynthesis, or hepatic LDL receptor number, at least in the mouse.