32 resultados para immunoglobulin g antibody

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several lines of evidence indicate that immunoglobulin-bound prolactin found in human serum is not a conventional complex between an anti-prolactin antibody and prolactin but a different type of association of prolactin with the Fab portion of IgG heavy chains. The complex of prolactin with IgG was purified from serum by anti-human prolactin affinity chromatography and was shown to contain close to 1 mole of N epsilon-(gamma-glutamyl)lysine crosslinks per mole of complex, a characteristic feature in structures crosslinked by transglutaminase. Interestingly, the complex caused a proliferation of cells from a subset of patients with chronic lymphocytic leukemia, while it was inactive in a cell proliferation prolactin bioassay. By contrast, human prolactin stimulated the proliferation of cells in the bioassay but had no effect on the complex-responsive cells from the patients. Competition studies with prolactin and free Fc fragment of IgG demonstrated a necessity for engaging both the prolactin and the immunoglobulin receptors for proliferation. More importantly, competition for the growth response by free prolactin and IgG suggests both possible reasons for the slow growth of this neoplasm as well as avenues for control of the disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The quantitative analysis with immunogold-electron microscopy using a single-affinity-purified anti-NADH-glutamate synthase (GOGAT) immunoglobulin G (IgG) as the primary antibody showed that the NADH-GOGAT protein was present in various forms of plastids in the cells of the epidermis and exodermis, in the cortex parenchyma, and in the vascular parenchyma of root tips (<10 mm) of rice (Oryza sativa) seedlings supplied with 1 mm NH4+ for 24 h. The values of the mean immunolabeling density of plastids were almost equal among these different cell types in the roots. However, the number of plastids per individual cell type was not identical, and some parts of the cells in the epidermis and exodermis contained large numbers of plastids that were heavily immunolabeled. Although there was an indication of labeling in the mitochondria using the single-affinity-purified anti-NADH-GOGAT IgG, this was not confirmed when a twice-affinity-purified IgG was used, indicating an exclusively plastidial location of the NADH-GOGAT protein in rice roots. These results, together with previous work from our laboratory (K. Ishiyama, T. Hayakawa, and T. Yamaya [1998] Planta 204: 288–294), suggest that the assimilation of exogeneously supplied NH4+ ions is primarily via the cytosolic glutamine synthetase/plastidial NADH-GOGAT cycle in specific regions of the epidermis and exodermis in rice roots. We also discuss the role of the NADH-GOGAT protein in vascular parenchyma cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The actin cytoskeleton plays a significant role in changes of cell shape and motility, and interactions between the actin filaments and the cell membrane are crucial for a variety of cellular processes. Several adaptor proteins, including talin, maintain the cytoskeleton-membrane linkage by binding to integral membrane proteins and to the cytoskeleton. Layilin, a recently characterized transmembrane protein with homology to C-type lectins, is a membrane-binding site for talin in peripheral ruffles of spreading cells. To facilitate studies of layilin's function, we have generated a layilin-Fc fusion protein comprising the extracellular part of layilin joined to human immunoglobulin G heavy chain and used this chimera to identify layilin ligands. Here, we demonstrate that layilin-Fc fusion protein binds to hyaluronan immobilized to Sepharose. Microtiter plate-binding assays, coprecipitation experiments, and staining of sections predigested with different glycosaminoglycan-degrading enzymes and cell adhesion assays all revealed that layilin binds specifically to hyaluronan but not to other tested glycosaminoglycans. Layilin's ability to bind hyaluronan, a ubiquitous extracellular matrix component, reveals an interesting parallel between layilin and CD44, because both can bind to cytoskeleton-membrane linker proteins through their cytoplasmic domains and to hyaluronan through their extracellular domains. This parallelism suggests a role for layilin in cell adhesion and motility.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Hypermutation can be defined as an enhancement of the spontaneous mutation rate which the organism uses in certain types of differentiated cells where a high mutation rate is advantageous. At the immunoglobulin loci this process increases the mutation rate > 10(5)-fold over the normal, spontaneous rate. Its proximate cause is called the immunoglobulin mutator system. The most important function of this system is to improve antibody affinity in an ongoing response; it is turned on and off during the differentiation of B lymphocytes. We have established an in vitro system to study hypermutation by transfecting a rearranged mu gene into a cell line in which an immunoglobulin mutator has been demonstrated. A construct containing the mu gene and the 3' kappa enhancer has all the cis-acting elements necessary for hypermutation of the endogenous gene segments encoding the variable region. The activity of the mutator does not seem to depend strongly on the position of the transfected gene in the genome. The mutator is not active in transformed cells of a later differentiation stage. It is also not active on a transfected lacZ gene. These results are consistent with the specificity of the mutator system being maintained and make it possible to delineate cis and trans mutator elements in vitro. Surprisingly, the mutator preferentially targets G-C base pairs. Two hypotheses are discussed: (i) the immunoglobulin mutator system in mammals consists of several mutators, of which the mutator described here is only one; or (ii) the primary specificity of the system is biased toward mutation of G-C base pairs, but this specificity is obscured by antigenic selection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A monomorphic anti-HLA-G monoclonal antibody (mAb) was obtained by immunization of HLA-B27/human beta 2-microglobulin double-transgenic mice with transfected murine L cells expressing both HLA-G and human beta 2-microglobulin. This mAb, designated BFL.1, specifically recognizes, by flow cytometry analysis, the immunizing HLA-G-expressing cells, whereas it does not bind to parental untransfected or to HLA-B7- and HLA-A3-transfected L cells, suggesting that it distinguishes between classical HLA-A and -B and nonclassical HLA-G class I molecules. This was further assessed by the absence of BFL.1 reactivity with a number of human cell lines known to express classical HLA class I proteins. In addition, we showed that the BFL.1 mAb also labels HLA-G-naturally-expressing JEG-3 and HLA-G-transfected JAR human choriocarcinoma cell lines as well as a subpopulation of first-trimester placental cytotrophoblast cells. Further biochemical studies were performed by immunoprecipitation of biotinylated membrane lysates: BFL.1, like the monomorphic W6/32 mAb, immunoprecipitated a 39-kDa protein in HLA-G-expressing cell lines, a size corresponding to the predicted full-length HLA-G1 isoform. However, in contrast to W6/32, which immunoprecipitates both classical and nonclassical HLA class I heavy chains, BFL.1 mAb does not recognize the class Ia products. Such a mAb should be a useful tool for analysis of HLA-G protein expression in various normal and pathological human tissues and for determination of the function(s) of translated HLA-G products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An antibody generated to an α-keto amide containing hapten 1 catalyzes the cis-trans isomerization of peptidyl-prolyl amide bonds in peptides and in the protein RNase T1. The antibody-catalyzed peptide isomerization reaction showed saturation kinetics for the cis-substrate, Suc-Ala-Ala-Pro-Phe-pNA, with a kcat/Km value of 883 s−1⋅M−1; the reaction was inhibited by the hapten analog 13 (Ki = 3.0 ± 0.4 μM). Refolding of denatured RNase T1 to its native conformation also was catalyzed by the antibody, with the antibody-catalyzed folding reaction inhibitable both by the hapten 1 and hapten analog 13. These results demonstrate that antibodies can catalyze conformational changes in protein structure, a transformation involved in many cellular processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G proteins play a major role in signal transduction upon platelet activation. We have previously reported a patient with impaired agonist-induced aggregation, secretion, arachidonate release, and Ca2+ mobilization. Present studies demonstrated that platelet phospholipase A2 (cytosolic and membrane) activity in the patient was normal. Receptor-mediated activation of glycoprotein (GP) IIb-IIIa complex measured by flow cytometry using antibody PAC-1 was diminished despite normal amounts of GPIIb-IIIa on platelets. Ca2+ release induced by guanosine 5′-[γ-thio]triphosphate (GTP[γS]) was diminished in the patient’s platelets, suggesting a defect distal to agonist receptors. GTPase activity (a function of α-subunit) in platelet membranes was normal in resting state but was diminished compared with normal subjects on stimulation with thrombin, platelet-activating factor, or the thromboxane A2 analog U46619. Binding of 35S-labeled GTP[γS] to platelet membranes was decreased under both basal and thrombin-stimulated states. Iloprost (a stable prostaglandin I2 analog) -induced rise in cAMP (mediated by Gαs) and its inhibition (mediated by Gαi) by thrombin in the patient’s platelet membranes were normal. Immunoblot analysis of Gα subunits in the patient’s platelet membranes showed a decrease in Gαq (<50%) but not Gαi, Gαz, Gα12, and Gα13. These studies provide evidence for a hitherto undescribed defect in human platelet G-protein α-subunit function leading to impaired platelet responses, and they provide further evidence for a major role of Gαq in thrombin-induced responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 2.0-Å resolution x-ray crystal structure of a novel trimeric antibody fragment, a “triabody,” has been determined. The trimer is made up of polypeptides constructed in a manner identical to that previously described for some “diabodies”: a VL domain directly fused to the C terminus of a VH domain—i.e., without any linker sequence. The trimer has three Fv heads with the polypeptides arranged in a cyclic, head-to-tail fashion. For the particular structure reported here, the polypeptide was constructed with a VH domain from one antibody fused to the VL domain from an unrelated antibody giving rise to “combinatorial” Fvs upon formation of the trimer. The structure shows that the exchange of the VL domain from antibody B1-8, a Vλ domain, with the VL domain from antibody NQ11, a Vκ domain, leads to a dramatic conformational change in the VH CDR3 loop of antibody B1-8. The magnitude of this change is similar to the largest of the conformational changes observed in antibody fragments in response to antigen binding. Combinatorial pairing of VH and VL domains constitutes a major component of antibody diversity. Conformationally flexible antigen-binding sites capable of adapting to the specific CDR3 loop context created upon VH–VL pairing may be employed by the immune system to maximize the structural diversity of the immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hyperpermeability of tumor vessels to macromolecules, compared with normal vessels, is presumably due to vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) released by neoplastic and/or host cells. In addition, VEGF/VPF is a potent angiogenic factor. Removal of this growth factor may reduce the permeability and inhibit tumor angiogenesis. To test these hypotheses, we transplanted a human glioblastoma (U87), a human colon adenocarcinoma (LS174T), and a human melanoma (P-MEL) into two locations in immunodeficient mice: the cranial window and the dorsal skinfold chamber. The mice bearing vascularized tumors were treated with a bolus (0.2 ml) of either a neutralizing antibody (A4.6.1) (492 μg/ml) against VEGF/VPF or PBS (control). We found that tumor vascular permeability to albumin in antibody-treated groups was lower than in the matched controls and that the effect of the antibody was time-dependent and influenced by the mode of injection. Tumor vascular permeability did not respond to i.p. injection of the antibody until 4 days posttreatment. However, the permeability was reduced within 6 h after i.v. injection of the same amount of antibody. In addition to the reduction in vascular permeability, the tumor vessels became smaller in diameter and less tortuous after antibody injections and eventually disappeared from the surface after four consecutive treatments in U87 tumors. These results demonstrate that tumor vascular permeability can be reduced by neutralization of endogenous VEGF/VPF and suggest that angiogenesis and the maintenance of integrity of tumor vessels require the presence of VEGF/VPF in the tissue microenvironment. The latter finding reveals a new mechanism of tumor vessel regression—i.e., blocking the interactions between VEGF/VPF and endothelial cells or inhibiting VEGF/VPF synthesis in solid tumors causes dramatic reduction in vessel diameter, which may block the passage of blood elements and thus lead to vascular regression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibodies to phosphatidylcholine (PtC), a common constituent of mammalian and bacterial cell membranes, represent a large proportion of the natural antibody repertoire in mice. Previous studies of several mouse strains (e.g., C57BL/6) have shown that anti-PtC antibodies are mainly encoded by the VH11 and VH12 immunoglobulin heavy chain variable region gene families. We show here, however, that VH11 and VH12 encode only a small proportion of the anti-PtC antibodies in BALB/c mice. Instead, VHQ52-encoded antibodies predominate in this strain. In addition, two-thirds of the cells expressing VHQ52 family genes use a single gene (which, interestingly, has been previously shown to predominate in the anti-oxazolone response). We also show here that in anti-PtC antibodies from all strains, the distinctive antigen-binding sites associated with VHQ52 differ substantially from those associated with VH11 and VH12. That is, VHQ52-containing transcripts preferentially use the joining region JH4 rather than JH1 and exhibit more diverse complementarity-determining region 3 (CDR3) junctions with more N-region nucleotide additions at the gene segment junctions. Thus, the VH gene family that predominates in the anti-PtC repertoire differs among mouse strains, whereas the distinctive VHDJH rearrangements (CDR3, JH) associated with each VH gene family are similar in all strains. We discuss these findings in the context of a recent hypothesis suggesting that CDR3 structure, independent of VH framework, is sufficient to define the specificity of an antibody.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although activation of one seven-transmembrane receptor can influence the response of a separate seven-transmembrane receptor, e.g., the phenomenon of synergism, the underlying mechanism(s) for this signaling process is unclear. The present study investigated communication between two receptors that exhibit classical synergism, e.g., human platelet thrombin and thromboxane A2 receptors. Activation of thrombin receptors caused an increase in ligand affinity of thromboxane A2 receptors. This effect (i) was shown to be specific, since a similar increase in ligand affinity was not caused by ADP or A23187; (ii) did not require cytosolic components, e.g., kinases, proteases, phosphatases, etc., because it occurred in isolated platelet membranes; (iii) was G protein-mediated because it was blocked by an Gαq C terminus antibody; and (iv) was associated with a net increase in Gαq coupling to thromboxane A2 receptors. Collectively, these data provide evidence that seven-transmembrane receptors that share a common Gα subunit can communicate with each other via a redistribution of their G proteins. Thus, activation of thrombin receptors increases Gαq association with thromboxane A2 receptors thereby shifting them to a higher affinity state. This signaling phenomenon, which modulates receptor-ligand affinity, may serve as a molecular mechanism for cellular adaptive processes such as synergism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platelet-endothelial cell adhesion molecule 1 (PECAM-1, CD31) is a 130-kDa member of the immunoglobulin gene superfamily expressed on endothelial cells, platelets, neutrophils, and monocytes and plays a role during endothelial cell migration. Phosphoamino acid analysis and Western blot analysis with anti-phosphotyrosine antibody show that endothelial PECAM-1 is tyrosine-phosphorylated. Phosphorylation is decreased with endothelial cell migration on fibronectin and collagen and with cell spreading on fibronectin but not on plastic. Cell adhesion on anti-integrin antibodies is also able to specifically induce PECAM-1 dephosphorylation while concurrently inducing pp125 focal adhesion kinase phosphorylation. Inhibition of dephosphorylation with sodium orthovanadate suggests that this effect is at least partially mediated by phosphatase activity. Tyr-663 and Tyr-686 are identified as potential phosphorylation sites and mutated to phenylalanine. When expressed, both mutants show reduced PECAM-1 phosphorylation but Phe-686 mutants also show significant reversal of PECAM-1-mediated inhibition of cell migration and do not localize PECAM-1 to cell borders. Our results suggest that beta 1-integrin engagement can signal to dephosphorylate PECAM-1 and that this signaling pathway may play a role during endothelial cell migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The idiotype of the Ig expressed by a B-cell malignancy (Id) can serve as a unique tumor-specific antigen and as a model for cancer vaccine development. In murine models of Id vaccination, formulation of syngeneic Id with carrier proteins or adjuvants induces an anti-idiotypic antibody response. However, inducing a potent cell-mediated response to this weak antigen instead would be highly desirable. In the 38C13 lymphoma model, we observed that low doses of free granulocyte/macrophage colony-stimulating factor (GM-CSF) 10,000 units i.p. or locally s.c. daily for 4 days significantly enhanced protective antitumor immunity induced by s.c. Id-keyhole limpet hemocyanin (KLH) immunization. This effect was critically dependent upon effector CD4+ and CD8+ T cells and was not associated with any increased anti-idiotypic antibody production. Lymphocytes from spleens and draining lymph nodes of mice primed with Id-KLH plus GM-CSF, but not with Id-KLH alone, demonstrated significant proliferation to Id in vitro without any biased production of interferon gamma or interleukin 4 protein or mRNA. As a further demonstration of potency, 50% of mice immunized with Id-KLH plus GM-CSF on the same day as challenge with a large s.c. tumor inoculum remained tumor-free at day 80, compared with 17% for Id-KLH alone, when immunization was combined with cyclophosphamide. Taken together, these results demonstrate that GM-CSF can significantly enhance the immunogenicity of a defined self-antigen and that this effect is mediated exclusively by activating the T-cell arm of the immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostaglandin E2 (PGE2) is a potent lipid molecule with complex proinflammatory and immunoregulatory properties. PGE2 can shape the immune response by stimulating the production of IgE antibody by B lymphocytes and the synthesis of T-helper type 2 cytokines [e.g., interleukin (IL)-4, IL-10], while inhibiting production of Th1 cytokines (e.g., interferon-gamma, IL-12). It is unknown what type of receptor binds PGE2 and modulates these responses. Recent analyses in nonhematopoietic cells have identified six PGE2 receptors (EP1, EP2, EP3 alpha, EP3 beta, EP3 gamma, and EP4). This investigation examines quiescent B lymphocytes and reports that these cells express mRNA encoding EP1, EP2, EP3 beta, and EP4 receptors. The immunoregulatory functions of each receptor were investigated using small molecule agonists that preferentially bind EP receptor subtypes. Unlike agonists for EP1 and EP3, agonists that bound EP2 or EP2 and EP4 receptors strongly inhibited expression of class II major histocompatibility complex and CD23 and blocked enlargement of mouse B lymphocytes stimulated with IL-4 and/or lipopolysaccharide. PGE2 promotes differentiation and synergistically enhances IL-4 and lipopolysaccharide-driven B-cell immunoglobulin class switching to IgE. Agonists that bound EP2 or EP2 and EP4 receptors also strongly stimulated class switching to IgE. Experiments employing inhibitors of cAMP metabolism demonstrate that the mechanism by which EP2 and EP4 receptors regulate B lymphocyte activity requires elevation of cAMP. In conclusion, these data suggest that antagonists to EP2 and EP4 receptors will be important for diminishing allergic and IgE-mediated asthmatic responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

67Cu (t1/2 = 62 h) has demonstrated potential as a radionuclide for radioimmunotherapy, but limited availability severely restricts its widespread use. 64Cu (t1/2 = 12.8 h) has been shown to have comparable effectiveness in vitro and in vivo. The present study was undertaken to examine the therapeutic potential of 64Cu- and 67Cu-bromoacetamidobenzyl-1,4,8,11-tetraazacyclotetradeca ne-N, N',N",N"'-tetraacetic acid (BAT)-2-iminothiolane (2IT)-1A3 (1A3 is a mouse anti-human colorectal cancer mAb) for treatment of GW39 human colon carcinoma carried in hamster thighs. Hamsters were injected with 64Cu- or 67Cu-BAT-2IT-1A3 or Cu-labeled nonspecific IgG (MOPC) or saline. Hamsters were killed 6-7 months after therapy or when tumors were > or = 10 g. Of the hamsters with small tumors (mean weight 0.43 +/- 0.25 g), 87.5% were disease-free 7 months after treatment with 2 mCi (1 Ci = 37 GBq) of 64Cu-BAT-2IT-1A3 or 0.4 MCi of 67Cu-BAT-2IT-1A3. The mean tumor doses at these activities of 64Cu- and 67Cu-BAT-2IT-1A3 were 586 and 1269 rad (1 rad = 0.01 Gy), respectively. In contrast, 76% of hamsters treated with 2 mCi of 64Cu-BAT-2IT-MOPC or 0.4 mCi of 67Cu-BAT-2IT-MOPC had to be killed before 6 months because of tumor regrowth. When hamsters with larger tumors (mean weight 0.66 +/- 0.11 g) were treated with 64Cu- or 67Cu-BAT-2IT-1A3, survival was extended compared with controls, but only one animal remained tumor-free to 6 months. These results demonstrate that 64Cu- and 67Cu-BAT-2IT-1A3 given in a single administered dose can eradicate small tumors without significant host toxicity, but additional strategies to deliver higher tumor doses will be needed for larger tumors.