5 resultados para gliosis

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the central nervous system (CNS) ciliary neurotrophic factor (CNTF) is expressed by astrocytes where it remains stored as an intracellular protein; its release and function as an extracellular ligand are thought to occur in the event of cellular injury. We find that overexpression of CNTF in transgenic mice recapitulates the glial response to CNS lesion, as does its injection into the uninjured brain. These results demonstrate that CNTF functions as an inducer of reactive gliosis, a condition associated with a number of neurological diseases of the CNS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CM101, an antiangiogenic polysaccharide derived from group B streptococcus, was administered by i.v. injection 1 hr post-spinal-cord crush injury in an effort to prevent inflammatory angiogenesis and gliosis (scarring) in a mouse model. We postulated that gliosis would sterically prevent the reestablishment of neuronal connectivity; thus, treatment with CM101 was repeated every other day for five more infusions for the purpose of facilitating regeneration of neuronal function. Twenty-five of 26 mice treated with CM101 survived 28 days after surgery, and 24 of 26 recovered walking ability within 2–12 days. Only 6 of 14 mice in the control groups survived 24 hr after spinal cord injury, and none recovered function in paralyzed limbs. MRI analysis of injured untreated and treated animals showed that CM101 reduced the area of damage at the site of spinal cord compression, which was corroborated by histological analysis of spinal cord sections from treated and control animals. Electrophysiologic measurements on isolated central nervous system and neurons in culture showed that CM101 protected axons from Wallerian degeneration; reversed γ-aminobutyrate-mediated depolarization occurring in traumatized neurons; and improved recovery of neuronal conductivity of isolated central nervous system in culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is considerable concern that bovine prions from cattle with bovine spongiform encephalopathy (BSE) may have been passed to humans (Hu), resulting in a new form of Creutzfeldt–Jakob disease (CJD). We report here the transmission of bovine (Bo) prions to transgenic (Tg) mice expressing BoPrP; one Tg line exhibited incubation times of ≈200 days. Like most cattle with BSE, vacuolation and astrocytic gliosis were confined in the brainstems of these Tg mice. Unexpectedly, mice expressing a chimeric Bo/Mo PrP transgene were resistant to BSE prions whereas mice expressing Hu or Hu/Mo PrP transgenes were susceptible to Hu prions. A comparison of differences in Mo, Bo, and Hu residues within the C terminus of PrP defines an epitope that modulates conversion of PrPC into PrPSc and, as such, controls prion transmission across species. Development of susceptible Tg(BoPrP) mice provides a means of measuring bovine prions that may prove critical in minimizing future human exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific antagonists of central dopaminergic receptors constitute the major class of antipsychotic drugs (APD). Two principal effects of APD are used as criteria for the pre-clinical screening of their antipsychotic action: (i) inhibition of basal and depolarization-induced activity of mesolimbic dopaminergic neurons; (ii) antagonism of the locomotor effects of dopaminergic agonists. Given that glucocorticoid hormones in animals increase dopamine release and dopamine-mediated behaviors and that high levels of glucocorticoids can induce psychotic symptoms in humans, these experiments examined whether inhibition of endogenous glucocorticoids might have APD-like effects on mesolimbic dopaminergic transmission in rats. It is shown that suppression of glucocorticoid secretion by adrenalectomy profoundly decreased (by greater than 50%): (i) basal dopaminergic release and the release of dopamine induced by a depolarizing stimulus such as morphine (2 mg/kg, s.c.), as measured in the nucleus accumbens of freely moving animals by microdialysis; (ii) the locomotor activity induced by the direct dopaminergic agonist apomorphine. The effects of adrenalectomy were glucocorticoid specific given that they were reversed by the administration of glucocorticoids at doses within the physiological range. Despite its profound diminution of dopaminergic neurotransmission, adrenalectomy neither modified the number of mesencephalic dopaminergic neurons nor induced gliosis in the mesencephalon or in the nucleus accumbens, as shown by tyrosine hydroxylase and glial fibrillary acidic protein immunostaining. In conclusion, these findings suggest that blockade of central effects of glucocorticoids might open new therapeutic strategies of behavioral disturbances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have examined the biochemical and histological effects of high concentrations of dopamine (0.05-1.0 micromol) injected into the rat striatum. Twenty-four hours after such injections, the oxidation products of dopamine and dihydroxyphenylacetic acid were detected as both free and protein-bound cysteinyl dopamine and cysteinyl dihydroxyphenylacetic acid. Protein-bound cysteinyl catechols were increased 7- to 20-fold above control tissue levels. By 7 days postinjection, the protein-bound cysteinyl catechols were still detectable, although reduced in concentration, whereas the free forms could no longer be measured. Histological examination of striatum at 7 days revealed a central core of nonspecific damage including neuronal loss and gliosis. This core was surrounded by a region containing a marked reduction in tyrosine hydroxylase immunoreactivity but no apparent loss of serotonin or synaptophysin immunoreactivity. When dopamine was injected with an equimolar concentration of either ascorbic acid or glutathione, the formation of protein-bound cysteinyl catechols was greatly reduced. Moreover, the specific loss of tyrosine hydroxylase immunoreactivity associated with dopamine injections was no longer detectable, although the nonspecific changes in cytoarchitecture were still apparent. Thus, following its oxidation, dopamine in high concentrations binds to protein in the striatum, an event that is correlated with the specific loss of dopaminergic terminals. We suggest that the selective degeneration of dopamine neurons in Parkinson's disease may be caused by an imbalance between the oxidation of dopamine and the availability of antioxidant defenses.